Если формула включает I (силу тока) или E (разность потенциалов), то непонятно, какую величину использовать, поскольку переменный ток не имеет постоянного значения ни того ни другого, а имеет только значения, которые постоянно изменяются от нуля до какой-то максимальной величины (I<sub>max</sub> и E<sub>max</sub>) сначала в одном направлении, потом — в другом.
Можно высчитать эти свойства переменного тока по их производительности — это проще, чем определять их абсолютные числовые значения. Можно увидеть, к примеру, что переменный ток способен иметь ту же производительность (если измерять теплоотдачу или другие факторы), что и постоянный ток с определенными значениями I и E. Соответственно величины I и E представляют собой эффективную силу тока и эффективную разность потенциалов переменного тока. Эффективные величины относятся к максимальным величинам следующим образом:
Можно предположить, что, найдя значения I и E для переменного тока, можно продолжить вычисления и сопротивления, представив его как отношение E/I (сила тока, при заданной разности потенциалов) в соответствии с законом Ома. Однако здесь начинаются сложности. Цепь, которая при постоянном токе имеет низкое сопротивление, при переменном токе будет характеризоваться гораздо большим сопротивлением, поскольку при той же разности потенциалов будет получаться более слабый ток. Очевидно, переменный ток наделяет цепь неким дополнительным фактором сопротивления, отличным от обычного сопротивления вещества, из которого изготовлена цепь.
Чтобы понять, почему это происходит, вернемся к первым экспериментам Фарадея с электромагнитной индукцией (см. гл. 12). Там электрический ток пускался по одной катушке — возникало магнитное поле, расширяющиеся силовые линии пересекали вторую катушку, индуцируя разность потенциалов, соответственно создавался электрический ток во второй катушке. Когда ток в первой катушке выключали, сокращающиеся силовые линии угасающего магнитного поля снова пересекали вторую катушку, провоцируя разность потенциалов с другим знаком, и, таким образом, появлялся ток во второй катушке, идущий в обратном направлении.
Это понятно. Но следует отметить, что, когда ток начинает идти по катушке так, что силовые магнитные линии распространяются наружу, они пересекают не только другие соседние катушки, но и каждый из витков, которые создают магнитное поле. Затем, когда ток в катушке выключается, силовые линии исчезающего магнитного поля пересекают те самые катушки, в которых только что был ток. Поскольку ток начинает и прекращает течь в катушке, индуктированный ток возникает в ней же. Это называется самоиндукцей или индуктивностью, и обнаружил ее Генри в 1832 году. (На этот раз Генри обнародовал свое изобретение, опередив Фарадея, который самостоятельно пришел к тем же выводам; Фарадей, как вы помните, таким же образом предвосхитил Генри в открытии электромагнитной индукции.)
Почти одновременно с Генри и Фарадеем индуктивность изучал и русский физик Генрих Фридрих Эмилий Ленц (1804–1865). Он сделал важное обобщение: индуктированная разность потенциалов, возникающая в цепи, всегда стремится к противодействию создавшей ее силе. Это явление носит название «закон Ленца».
Следовательно, когда при замыкании цепи возникает ток, ожидается, что сила тока немедленно возрастет до предполагаемого уровня. Однако по мере возрастания она создает индуктированную разность потенциалов, которая меняет направление тока на противоположное. Это противодействие индуктивности заставляет первоначальный ток усиливаться в цепи до ожидаемого уровня сравнительно медленно.
Размыкание цепи приводит к прерыванию течения тока, при этом логично, что сила тока сразу упадет до нуля. Вместо этого выключение тока провоцирует индуктированное напряжение, которое заставляет ток продолжать течь. Интенсивность тока падает до нуля сравнительно медленно. |