Интенсивность тока падает до нуля сравнительно медленно. Эту противоположную разность потенциалов, произведенную самоиндукцией, часто называют обратным напряжением.
При постоянном токе этот эффект противодействующей индуктивности не настолько важен, поскольку ощущается только при пуске и остановке тока, когда силовые линии двигаются наружу и внутрь. Пока ток постоянно течет в одном направлении, силовые линии не меняются, нет индуктированного тока, нет взаимодействия с первичным током.
Переменный же ток меняется постоянно, и для него это важно, поскольку магнитные силовые линии, все время двигаясь наружу и внутрь, постоянно пересекают катушки. Индуцируемая разность потенциалов здесь присутствует постоянно и постоянно противодействует основной разности потенциалов, сильно уменьшая ее. Так, если некая разность потенциалов создает сильный постоянный ток в определенной цепи, то переменный ток при ней же будет в большой степени нейтрализован индуктивностью и, следовательно, будет в такой же цепи гораздо слабее.
В честь ученого единица индуктивности получила название «генри». Когда сила тока в цепи меняется в пропорции 1 ампер в секунду и в процессе индуцирует противоположную разность потенциалов мощностью 1 вольт, цепь имеет индуктивность в 1 генри. По этому определению 1 генри равен 1 вольту на ампер в секунду или вольт-секунду на ампер (вольт-с/ампер).
Сопротивление тока, произведенное самоиндукцией, зависит не только от значения индуктивности, как таковой, но также и от частоты переменного тока, поскольку с увеличением частоты изменение силы тока за заданное время (ампер в секунду) увеличивается. Соответственно чем больше поворотов делается в секунду, тем большее сопротивление тока создается при одной и той индуктивности.
Представим, что индуктивность обозначается как L, а частота переменного тока как f. Сопротивление, произведенное этими факторами, называется индуктивным сопротивлением и обозначается как X<sub>L</sub>. Получается, что:
Если L измерять в генри, то есть в вольт-секундах на ампер, а f — в обратных секундах, то размерностью X<sub>L</sub> должны быть вольт-секунда на ампер в секунду. Секунды сокращаются, и размерность становится просто вольт на ампер, то есть ом (см. гл. 11). Другими словами, единицы измерения индуктивного сопротивления, как и обычного, — омы.
И обычное сопротивление (R), и индуктивное сопротивление (X<sub>L</sub>) влияют на силу тока, создающуюся в цепи переменного тока при заданной разности потенциалов; вместе они создают полное сопротивление (импеданс) — Z Однако оно вычисляется не простым прибавлением индуктивного сопротивления к обычному, а по следующей формуле:
В цепи с переменным током именно импеданс играет ту же роль, что и обычное сопротивление в цепи с постоянным током. Другими словами, эквивалентом закона Ома для цепи с переменным током будет IZ = E, или I I = EZ, или Z = I/E.
Конденсаторы производят сопротивление несколько по-другому. Конденсатор в цепи постоянного тока играет роль воздушной пробки и при нормальных разностях потенциалов не дает току протекать. В цепи же с переменным током, однако, конденсатор не препятствует течению тока. Точнее, через воздушную пробку ток не движется, но он поочередно скапливает электроны сначала в одной пластине конденсатора, затем — в другой. Перемещаясь туда-обратно из одной пластины в другую, ток проходит через прибор, скажем электрическую лам» почку, — и та начинает светиться. Нить накала реагирует на прохождение по ней тока, а вовсе не на то, что где-то, может быть, есть другой участок цепи, по которой ток не движется.
Чем больше емкость конденсатора, тем сильнее мечущийся туда-сюда ток, потому что тем больше накапливающийся то в одной, то в другой пластине заряд. Можно объяснить это и по-другому: чем больше емкость конденсатора, тем меньше противодействие току, поскольку для электронов имеется больше места в пластине, и, следовательно, меньшим является взаимное отталкивание отрицательных зарядов, противодействующее току. |