Можно объяснить это и по-другому: чем больше емкость конденсатора, тем меньше противодействие току, поскольку для электронов имеется больше места в пластине, и, следовательно, меньшим является взаимное отталкивание отрицательных зарядов, противодействующее току.
Это противодействие непрерывному току называется емкостным сопротивлением (X<sub>C</sub>), и оно обратно пропорционально емкости (C) конденсатора. Емкостное сопротивление также обратно пропорционально частоте тока (f), поскольку чем быстрее ток меняет направление, тем менее вероятно, что та или иная пластина конденсатора переполнится электронами в течение половины цикла, и тем меньше взаимное отталкивание отрицательных зарядов, противодействующее току. (Другими словами, повышение частоты уменьшает емкостное сопротивление, хотя и повышает сопротивление индуктивное.) Обратное отношение можно выразить следующим образом:
Емкость (C) измеряется в фарадах, то есть в кулонах на вольт, или в ампер-секундах на вольт. Поскольку размерность частоты (f) — обратные секунды, то размерность 2πfC — ампер-секунды на вольты на секунды, то есть амперы на вольты. Размерность емкостного сопротивления (Х<sub>C</sub>) обратна этой, то есть вольты на амперы, или омы. Таким образом, ясно, что емкостное сопротивление, как и индуктивное, является формой общего сопротивления в цепи.
И емкостное сопротивление, и индуктивное сопротивление уменьшают силу тока в цепи с переменным током при заданной разности потенциалов, если присутствуют в ней поодиночке. Однако делают они это противоположным образом.
В простейшем случае сила тока и разность потенциалов переменного тока обе увеличиваются и уменьшаются по синусоиде. Нулю они равняются одновременно; одновременно же одна из них достигает максимума, а вторая — минимума. Индуктивное же сопротивление, однако, приводит к тому, что сила тока начинает «запаздывать», достигая своего максимума (или минимума, или нуля) только через какое-то время после того, как его достигла разность потенциалов. С другой стороны, емкостное сопротивление приводит к тому, что сила тока начинает «спешить», увеличиваясь и падая на какое-то время раньше, чем разность потенциалов. В любом случае сила тока и разность потенциалов теряют синхронность, и энергия теряется.
Поэтому, если в цепи присутствуют и емкостное, и индуктивное сопротивления, действие одного оказывается противоположным действию другого. «Ускорение» емкостного сопротивления накладывается на «запаздывание» сопротивления индуктивного. Общее сопротивление в этом случае будет выражаться так:
Если цепь составлена таким образом, что емкостное сопротивление равно индуктивному сопротивлению, X<sub>L</sub> – X<sub>C</sub> = 0 и Z = √R<sup>2</sup> = R. Общее сопротивление цепи с переменным током в этом случае не больше, чем обычное сопротивление аналогичной цепи с постоянным током. Такая цепь носит название «резонансный контур». Обратите внимание, что импеданс никогда не может быть меньше сопротивления. Если емкостное сопротивление больше, чем индуктивное, то X<sub>L</sub> – Х<sub>с</sub> является отрицательной величиной, но его квадрат — величина положительная, и если взять квадратный корень от суммы, то окончательное значение Z будет больше, чем R.
Это только самое начало усложнений, которые привносит в электрические цепи переменный ток. Большую часть полного знания о цепях переменного тока получил в начале XX века немецко-американский инженер-электрик Чарльз Протеус Штайнмец (1865–1923), и только после этого стало возможным широкое использование переменного тока.
Трансформаторы
Еще до того как Штайнмец рационализировал использование переменного тока, и несмотря на огромные трудности, которые стояли на пути электриков в отсутствие этих знаний, а также несмотря на огромное сопротивление таких людей, как, например, Эдисон и Кельвин, борьба за применение переменного тока была выиграна. |