Ветвь кривой становится все прямее, не делаясь никогда вполне прямой, подобно тому как в аналитической геометрии прямая линия рассматривается как кривая первого порядка с бесконечно малой кривизной. Сколь бы большим ни сделалось — х логарифмической кривой, у никогда не станет = 0.
Прямое и кривое. В дифференциальном исчислении они в конечном счете приравниваются друг к другу. В дифференциальном треугольнике, гипотенузу которого образует дифференциал дуги (если пользоваться методом касательных), эту гипотенузу можно рассматривать
«как маленькую прямую линию, являющуюся одновременно элементом дуги и элементом касательной», — все равно, будем ли мы рассматривать кривую как состоящую из бесконечно многих прямых линий или же «как строгую кривую; ибо, поскольку искривление в каждой точке М бесконечно мало, — последнее отношение элемента кривой к элементу касательной есть, очевидно, отношение равенства» .
Отношение здесь непрерывно приближается к отношению равенства, но приближается, сообразно природе кривой, асимптотическим образом, так как соприкасание ограничивается точкой, не имеющей длины. Тем не менее в конце концов принимается, что равенство кривой и прямой достигнуто (Боссю, «Дифференциальное и интегральное исчисление»,
Париж, год VI, т. I, стр. 149). В случае полярных кривых дифференциальная воображаемая абсцисса принимается даже за параллельную действительной абсциссе, и на основе этого допущения производят дальнейшие действия, хотя обе пересекаются в полюсе; отсюда даже умозаключают о подобии двух треугольников, из которых один имеет один из своих углов как раз в точке пересечения тех двух линий, на параллелизме которых основывается все подобие! (фиг. 17).
Когда математика прямого и кривого оказывается, можно сказать, исчерпанной, — новое, почти безграничное поприще открывается такой математикой, которая рассматривает кривое как прямое (дифференциальный треугольник) и прямое как кривое (кривая первого порядка с бесконечно малой кривизной). О метафизика!
Тригонометрия. После того как синтетическая геометрия до конца исчерпала свойства треугольника, поскольку последний рассматривается сам по себе, и не в состоянии более сказать ничего нового, перед нами благодаря одному очень простому, вполне диалектическому приему открывается некоторый более широкий горизонт. Треугольник более не рассматривается в себе и сам по себе, а берется в связи с некоторой другой фигурой — кругом. Каждый прямоугольный треугольник можно рассматривать как принадлежность некоторого круга: если гипотенуза = r, то катеты образуют синус и косинус; если один катет = r, то другой катет = tg, а гипотенуза = sec. Благодаря этому стороны и углы получают совершенно иные определенные взаимоотношения, которых нельзя было открыть и использовать без этого отнесения треугольника к кругу, и развивается совершенно новая, далеко превосходящая старую теория треугольника, которая применима повсюду, ибо всякий треугольник можно разбить на два прямоугольных треугольника. Это развитие тригонометрии из синтетической геометрии является хорошим примером диалектики, рассматривающей вещи не в их изолированности, а в их взаимной связи.
Тождество и различие — диалектическое отношение уже в дифференциальном исчислении, где dx бесконечно мало, но тем не менее действенно и производит все.
Молекула и дифференциал. Видеман (кн. III, стр. 636) прямо противопоставляет друг другу конечное расстояние и молекулярное.
К стр. 17—18 : Согласие между мышлением и бытием. — Бесконечное в математике
Над всем нашим теоретическим мышлением господствует с абсолютной силой тот факт, что наше субъективное мышление и объективный мир подчинены одним и тем же законам и что поэтому они и не могут противоречить друг другу в своих результатах, а должны согласоваться между собой. |