Изменить размер шрифта - +
Палочка — сама «устройство». И ответ обычно бывал правильным («Пусть краска сама поступает в трубу...» и т. д.). Постепенно необходимость упоминать о волшебной палочке исчезает, и остается та формулировка вопроса, которая записана в алгоритме.

Существуют два правила, помогающие точнее определить идеальный конечный результат.

Правило первое: не следует загадывать заранее, возможно или невозможно достичь идеального результата.

Вспомним, например, задачу о подъемном устройстве для транспортных самолетов. Идеальным результатом в этой задаче было бы следующее: при погрузке на самолете появляется кран, затем в полете этот кран исчезает, а при разгрузке на другом аэродроме он появляется вновь. На первый взгляд это совершенно невозможно осуществить. Однако каждое изобретение, как уже говорилось, — путь через «невозможно». И в этой задаче «невозможно» означает лишь «невозможно известными способами». Изобретатель должен найти новый способ, и тогда невозможное станет возможным.

Кран, смонтированный на самолете, конечно, не способен исчезать. Но на время полета металлическая ферма крана может быть включена в силовую схему фюзеляжа. Кран станет (в полете) частью конструкции самолета, будет нести полезную нагрузку и исчезнет как груз. Вес крана компенсируется соответствующим уменьшением веса конструкции фюзеляжа.

Правило второе: не надо заранее думать о том, как и какими путями будет достигнут идеальный конечный результат.

Вспомните, как шел Д. Д. Максутов к идее менискового телескопа. Изобретателю надо было как-то прикрыть отверстие рефлектора, чтобы предохранить зеркало от загрязнения и повреждений. Максутов начал с определения идеального конечного результата: мысленно закрыл отверстие телескопа пластинкой из оптического стекла. В этот момент он не думал о том, как это будет конкретно осуществлено. Обстоятельство чрезвычайно показательное! Ведь создать школьный телескоп — значит создать телескоп дешевый, а пластинка из оптического стекла, казалось бы, заведомо преграждала путь в этом направлении: оптическое стекло дорого.

Нужна была большая смелость мысли, чтобы повернуться спиной к задаче. Но только так и удалось найти путь к удешевлению всей конструкции и снижению ее общей стоимости.

 

Рис. 7. Надо отчетливо представить себе каждую деталь, а затем упростить полученную схему.

 

При решении многих задач наилучший способ определить идеальный конечный результат состоит в том, чтобы просто перевести вопрос, содержащийся в задаче, в утвердительную форму. Взять хотя бы магнитную сборку подшипников. Вопрос, поставленный в задаче, таков, как при монтаже укреплять ролики на дорожках качения цапфы? Идеальный конечный результат можно сформулировать так: «Ролики сами собой держатся на своих местах» (или: «Внешняя среда сама держит ролики...»). Обратите внимание: на определение идеального результата не влияют соображения о том, возможно или невозможно, чтобы ролики держались «сами собой», и как именно это будет осуществлено.

Представьте себе два кинокадра. На одном изображена ситуация, породившая задачу. В данном случае на кинокадре должна быть показана цапфа с падающими роликами. Второй кинокадр — идеальный конечный результат. Ролики «сами» держатся на цапфе.

К такому зрительному представлению «в два кадра» легко привыкнуть. Вместе с тем оно избавляет от многих ошибок при определении идеального результата. Кинематограф приучил нас преодолевать невозможное: на экране все возможно — это специфика кино. Поэтому и целесообразно использовать имеющиеся у каждого «кинонавыки» для того, чтобы правильно сделать первый шаг аналитической стадии.

 

Решение задачи 1

На одном кинокадре должно быть тороидальное колечко без проволоки, а на другом — то же колечко, но уже с появившейся на нем проволочной обмоткой.

Быстрый переход