Нет необходимости делать корабль жидким или газообразным, достаточно изменить агрегатное состояние той его части, которая находится на уровне льда.
Часть 6
6—1. Раньше корабль входил в систему «ледокол — транспортные суда, следующие за ним». Коль скоро наше транспортное судно само движется во льдах, отпадает надобность в ледоколе. Можно рассуждать по-другому: ледокол, освобожденный от излишних двигательных установок, сам может возить груз.
6—2. Поскольку разрушение льда ведется теперь узкими лезвиями, можно использовать такие приемы разрушения льда, которые раньше были неэкономичными, например, различные электрофизические способы.
6—3. Смысл найденной идеи: не идти напролом по всему фронту, а продвигаться узкими лезвиями. Вероятно, эта идея может быть применена в технике земляных работ, где почти всегда идут напролом...
Задачу о ледоколе мы решили «в обход»: на первой же стадии решения цель была изменена. Возьмем теперь задачу о дождевателе и рассмотрим такой случай, когда цель не меняется.
Чтобы не было соблазна идти обходными путями, начнем с шага 2—3, а все предшествующие шаги заменим краткой патентной информацией.
Основная тенденция в развитии самоходных дождевальных агрегатов — увеличивать длину крыльев. Чтобы несколько уменьшить консольную нагрузку на крылья, их снабжают опорными тележками с колесами. Так, например, устроен агрегат по патенту ФРГ № 1068940 (рис. 25, а). В английском патенте № 778716 крылья выполнены в виде шпренгельных (принцип дробления!) ферм (рис. 25, б). К сожалению, опорные тележки не избавляют от необходимости делать крылья жесткими и, следовательно, тяжелыми. Не случайно патент АРЕ № 2698 предусматривает самоходные опорные тележки. Круг, таким образом, замыкается: конструкция вновь усложняется.
Попробуем найти лучшее решение.
2—3. Дана система, состоящая из тележки, крыльев и расположенных на них распылителей воды. Увеличение длины крыльев сильно утяжеляет систему.
2—4. В принципе можно менять все элементы тележку, крылья и распылители. Но если мы решаем прямую задачу (увеличение размаха крыльев), тележка и распылители должны остаться неизменными. Поэтому
а) — крылья.
б) — тележка и распылители.
Рис. 25. Основная тенденция развития самоходных дождевальных агрегатов — увеличение длины крыльев: а — агрегат по патенту ФРГ № 1068940; б — в английском патенте № 778716 крылья сделаны в виде шпренгельных шарнирных ферм.
2—5. Крылья.
3—1. Крылья при поливе сами держатся над полем (при размахе в 200—300 м).
3—2. См. рис. 26.
3—3. Не выполняют требуемого действия «лишние» участки крыльев АБ и ВГ.
3—4. а) Нам надо, чтобы АБ и ВГ сами держались над землей.
б) Мешает вес этих частей.
в) Части АБ и ВГ должны что-то весить (это части конструкции) и в то же время веса у них не должно быть.
3—5. Части АБ и ВГ будут держаться над землей, если мы предельно уменьшим их вес (как в задаче о ледоколе предельно уменьшали ширину взаимодействующей со льдом части) или как-то уравновесим крылья.
3—6. Облегчение крыльев — путь, ведущий к надувным конструкциям. Этот путь рассмотрен в условиях задачи. Остается уравновешивание: к частям АБ и ВГ надо приложить силы, равные по величине силе веса этих частей и противоположные по направлению. Силы могут быть аэродинамические (у нас крылья), гидродинамические и т. д.
Рис. 26. К задаче 2, шаг 3—2: крылья сами себя держат гидрореактивной силой подаваемой в распылители воды.
3—7. Аэродинамические силы в данном случае малы.
Чтобы крылья сами себя держали, целесообразно использовать гидрореактивную силу подаваемой в распылители воды. |