С этого момента авторитет Германа Оберта как главного немецкого специалиста по космическим вопросам был неоспорим. Много позже Вернер фон Браун – создатель «оружия возмездия» Третьего рейха – не уставал подчеркивать, что он и его коллеги-практики в Германии или в США, – всего лишь «жестянщики», а все основные конструктивные идеи ракетостроения этих стран принадлежат именно Оберту.
Поговорим немного об этом выдающемся человеке.
В июле 1869 года дед Оберта по материнской линии, Фридрих Крассер, известный врач, поэт и вольнодумец, заявил в кругу друзей, что через сто лет люди окажутся на Луне, а «наши внуки будут свидетелями этого свершения». Судьбе было угодно, чтобы это поэтическое предчувствие превратилось в точное предсказание. Ровно через сто лет, в июле 1969 года, космический корабль «Аполлон-11» достиг Луны и посадочный модуль «Орел» высадил на ее поверхность первых людей – астронавтов Армстронга и Олдрина. Внук Крассера был приглашен в США присутствовать при старте этого корабля.
Герман Оберт родился 25 июня 1894 года в румынском городке Германштадт (Медиаш), однако вскоре его родители переехали в Шессбург. После окончания начальной школы, в которой Герман Оберт показал хорошие способности к учебе, в 1904 году, в возрасте 10 лет он поступил в местную гимназию. Именно в гимназии будущий профессор по-настоящему увлекся проблемами космонавтики.
Как и для некоторых других пионеров космонавтики, импульсом к серьезному изучению вопроса о возможности космических полетов, для юного Германа послужил известный роман Жюля Верна «Из пушки на Луну», отличавшийся от многих других фантастических романов на ту же тему детальными описаниями гигантской пушки, которая должна была выстрелить снаряд к Луне и обилием строгих расчетов, с помощью которых автор обосновывал свои научные фантазии – все это придавало им особую убедительность.
Предсказание деда могло стать реальностью, если Жюль Верн не ошибся в расчетах, и, по воспоминаниям самого Оберта, присущий ему «дух противоречия» заставил гимназиста приступить к проверке численных данных, приводившихся в романе. В романе Жюля Верна приводится скорость, которую нужно было развить снаряду, чтобы улететь от Земли – 11,2 км/с (вторая космическая скорость). Чтобы определить, не ошибся ли Жюль Верн, Оберт мог опереться только на школьную формулу свободного падения тела под действием постоянного гравитационного ускорения. Кроме того, он знал, что это ускорение изменяется обратно пропорционально квадрату расстояния до центра Земли. Вычислив значения этого ускорения для разных расстояний от центра Земли, Герман затем разделил весь путь на сравнительно короткие участки, внутри которых гравитационное ускорение могло считаться практически постоянным. Применяя к каждому такому участку формулу для свободного падения тела под действием силы притяжения и просуммировав все приращения скорости, он получил требуемое значение скорости отлета от Земли. Герман проделал эти вычисления дважды – для двух граничных значений гравитационных ускорений в каждом участке – наибольшего и наименьшего, справедливо предположив, что истинное значение требуемой скорости будет лежать между ними. Расчеты показали, что 11,2 км/с действительно лежит между двумя найденными значениями скоростей и, следовательно, Жюль Верн прав. Можно лишь удивляться остроумному ходу рассуждений шессбургского гимназиста, ведь фактически он использовал, не зная того, метод численного интегрирования.
Анализируя роман дальше, Герман в конце концов натолкнулся на непреодолимое препятствие: им оказалось ускорение, которое снаряд должен испытывать во время разгона на сравнительно коротком участке – 275 метров. К тому времени Герман уже знал формулы для равноускоренного движения – оказалось, что если предположить разгон снаряда в стволе орудия равноускоренным, то он будет испытывать гигантские ускорения, а, согласно Ньютону, сила равна массе, умноженной на ускорение, и это позволяло определить силу, с которой пассажир, находящийся в снаряде, будет прижат к его дну. |