В ту пору всех интересовал радий, применяемый, как мы помним, в медицинских целях. Уран считался побочным продуктом, но фирма располагала некоторыми его запасами в виде оксида и неочищенного ураната натрия. Доктор Риль сразу оценил перспективы проекта и лично занялся очисткой урана. Он будет заниматься этим до конца войны.
Всего за несколько недель Риль наладил производство урана на небольшом заводике в Ораниенбурге. Каждый месяц здесь выпускалось около тонны очищенного оксида урана, причем первая тонна была отгружена военным в начале 1940 года. Работа над проектом наконец-то началась.
В первых числах декабря 1939 года Эрих Багге вновь встретился с Вернером Гейзенбергом. Тот сообщил, что, кажется, понял, как стабилизировать цепную реакцию в «урановой машине». Согласно его расчетам, по мере того как будет расти температура, эффективное поперечное сечение дейтерия станет уменьшаться. При определенной температуре реакция автоматически замедлится. Зависит эта температура от размеров «машины». По-видимому, речь идет о сотнях, а не о тысячах градусов Цельсия. Как показывает расчетный пример, если взять 1,2 тонны урана и 1 тонну тяжелой воды, смешать их в виде пасты и поместить в шар радиусом 60 см, реакция внутри подобного агрегата стабилизируется при 800 °C.
6 декабря Гейзенберг представил в Управление вооружений сухопутных войск доклад под названием «Возможность технического получения энергии при расщеплении урана», в котором показал, что предложение Пауля Хартека отделить уран от замедлителя не очень удачно, поскольку тогда «машина» окажется слишком маленькой.
Нобелевский лауреат проанализировал и возможности модификации «машины». Самым надежным методом, писал он, является обогащение природного урана изотопом урана-235. Только так можно добиться уменьшения размеров «урановой машины» до одного кубического метра, что позволит создать новое взрывчатое вещество, чья мощь в тысячи раз превзойдет мощь тротила. Но для производства энергии можно использовать и обычный уран, не прибегая к разделению его изотопов. Для этого нужно добавить к урану вещество, способное замедлять излучаемые нейтроны, не поглощая их. Согласно имеющимся данным, этим требованиям отвечают лишь тяжелая вода и очищенный уголь. Однако при малейшем их загрязнении выработка энергии прекратится. В заключение профессор Гейзенберг предупреждал, что реактор является очень интенсивным источником вредного нейтронного и гамма-излучения.
В канун Второй мировой войны единственной фирмой, выпускавшей тяжелую воду в промышленных количествах, была норвежская «Норск гидро». Она действовала при Веморкской гидроэлектростанции, близ городка Рьюкан на юге Норвегии. Тяжелая вода была побочным продуктом водородного электролиза. Еще в 1932 году американский физик Гарольд Юри доказал, что вода, остающаяся после электролиза в ячейках, содержит гораздо больше тяжелого водорода, чем обычно. Если подвергать электролизу 100 тысяч литров воды до тех пор, пока в ячейках не останется всего литр воды, то в этом литре содержание тяжелой воды достигнет 99 %. По этому принципу фирма и изготавливала тяжелую воду. Немецкий эксперт, присланный проинспектировать установку «Норск гидро», назвал ее шедевром.
Установка начала действовать в 1934 году. До 1938 года здесь изготовили всего 40 килограммов тяжелой воды. Потом ее производство увеличилось, но и в конце 1939 года здесь выпускали не более десяти килограммов воды в месяц. Впрочем, выбора у немецких военных не было. Вопрос был лишь в том, согласятся ли норвежцы поставлять тяжелую воду в Германию.
Тем временем военные власти начали выполнять решение о сборе ученых под крышей Физического института. И сразу же столкнулись с проблемой. Директор института, знаменитый нидерландский физик-экспериментатор Петер Дебай, лауреат Нобелевской премии 1936 года, будучи иностранцем, не мог возглавить секретный проект. |