Изменить размер шрифта - +

Поучительна легенда о лабораторных часах Галилея.

В то время нельзя было купить в магазине секундомер. Даже ходиков еще не изобрели. Галилей же вышел из положения совсем особым образом. Он отсчитывал время ударами своего пульса, потом, как уверяют давние биографы, устроил неплохие лабораторные часы из неожиданных составных частей: ведра, весов и хрустального бокала. В дне ведра проделал дырочку, через которую текла ровная струйка воды. По солнцу замечал, сколько унций воды вытекало за час, и затем высчитывал вес воды, вытекающей за минуту и за секунду.

И вот опыт. Ученый опускает в желоб шар и тут же подставляет под струйку бокал. Когда шар достигает заранее намеченной точки, быстро отодвигает бокал. Чем дольше катился шар, тем больше натекло воды. Ее остается поставить на весы — и время измерено. Чем не секундомер!

«Мои секунды мокрые, — говорил Галилей, — но зато их можно взвешивать».

Соблюдая элементарную строгость, стоит, впрочем, заметить, что эти часы не так просты, как может показаться. Вряд ли Галилей учитывал уменьшение давления (а значит, и скорости) водяной струи с понижением уровня воды в ведре. Этим можно пренебречь, лишь если ведро очень широкое, а струйка — узкая. Возможно, так оно и было.

 

Открытие ускорения

Галилеевский рабочий кабинет — прародитель всех нынешних роскошных физических лабораторий и институтов. А потому, глядя с уважением на современные циклотроны и реакторы, не лишне вспомнить, как в старой Пизе катились по желобу шары, спускались на нитях гири, текли водяные «стрелки» часов. Эта большая работа, повторенная потом в тысячах и тысячах лабораторий — научных, университетских, школьных, — была первой классической серией экспериментов с движением тел под действием тяжести.

Из множества опытов Галилей отыскал главную особенность такого движения —оно равноускоренное. Чем дальше от начала пути, тем быстрее, причем скорость нарастает в равные промежутки времени строго одинаковыми порциями. Галилей первым понял, что, кроме скорости, у падающих камней и скатывающихся шаров есть еще ускорение — скорость изменения скорости. Желоб горизонтален — ускорения нет, есть только скорость. Шар катится равномерно. Появился наклон, и шар ускоряется. Круче наклонен желоб — больше ускорение. Это нехитрое понятие — замечательное открытие науки XVI века. Потому что прежде движение умели различать только по скоростям.

И еще Галилей вывел формулу пути равноускоренного движения. Вот она, хорошо знакомая нашим семиклассникам

S=at<sup>2</sup>/2

Путь S равен половине ускорения а, помноженной на квадрат времени t. Отличная формула! Знаешь время и ускорение — легко подсчитать путь, пройденный катящимся по желобу шаром. Знаешь путь и ускорение — вычислишь время. Знаешь время и путь — вычислишь ускорение. В том числе и таинственное ускорение силы тяжести, которое с удивительным постоянством гонит вниз падающие сосульки и пушечные ядра.

В самом деле: измерь высоту Пизанской башни (S) и засеки длительность падения с нее ядра (t), а потом подставь полученные величины в нашу формулу. В аккуратном опыте ускорение силы тяжести у поверхности Земли для всех тел неизменно составляет 9,81 метра в секунду за секунду. Оно обозначается буквой g. Это то самое «же», о котором теперь так много говорят космонавты. Галилей этой цифры, правда, получить не смог. Слишком уж несовершенны были приборы. Однако было окончательно сделано важнейшее заключение: не только вес, но и материал падающего тела на быстроту его падения не влияют. Если что и замедляет падение, так это воздух (или трение о желоб). Догадка по тому времени замечательная. Лишь значительно позднее, с изобретением воздушных насосов, она была подтверждена опытом.

 

Самоотверженный альпинист

По подсказкам Галилея мы выяснили, как падают тела: все с одним и тем же ускорением, независимо от веса и всего прочего.

Быстрый переход