Изменить размер шрифта - +
У других позвоночных обнаруживается только предковая форма гормона, называемая «вазотоцин», ее структура промежуточная между этими двумя гормонами млекопитающих.

Ничего такого занимательного для нейробиологов XX столетия окситоцин и вазопрессин собой не представляли. Их производили нейроны гипоталамуса, которые посылали аксоны в заднюю долю гипофиза. Там окситоцин и вазопрессин поступали в кровь, обретая при этом статус гормонов, и с этого момента больше к мозгу не имели никакого отношения. Окситоцин стимулировал сокращение матки во время родов и послеродовую лактацию. Вазопрессин (или, иначе, антидиуретический гормон) регулировал удержание жидкости в почках. А так как по структуре эти два гормона похожи, каждый из них мог выполнять в ослабленном виде функцию другого. Вот и все.

 

Что заметили нейробиологи

 

Но вдруг все зашевелилось: ученые обнаружили, что те самые нейроны гипоталамуса, которые производят окситоцин и вазопрессин, одновременно посылают отростки в другие области мозга, в том числе в связанную с системой дофамина вентральную покрышку, прилежащее ядро, гиппокамп, миндалину и лобную кору. А именно там особенно много рецепторов гормонов. Параллельно выяснилось, что окситоцин и вазопрессин синтезируются и выделяются не только нейронами гипоталамуса, но и в других участках мозга. Эти два скучных классических периферийных гормона, оказывается, влияют на функционирование мозга и поведение. И их стали называть нейропептидами – нейроактивными сигнальными молекулами с химической структурой пептидов. Вот так замысловато ученые называют эти небольшие белки (я тоже буду так их называть, чтобы не повторять бесконечно «окситоцин и вазопрессин»; но нужно иметь в виду, что существуют и другие нейропептиды).

Первые открытия, касающиеся влияния окситоцина и вазопрессина на поведение, прекрасно укладывались в общую картину. Окситоцин готовит организм самки млекопитающего к родам и лактации; логично было бы предположить, что он же способствует формированию материнского поведения. Когда у самки крысы рождаются детеныши, мозг усиленно вырабатывает окситоцин, подключая гипоталамический путь с его определенно разными функциями у самцов и самок. Вентральная покрышка, что примечательно, усиливает чувствительность к нейропептидам у самок за счет наращивания количества окситоциновых рецепторов. Введите окситоцин в мозг нерожавшей крысы, и она начнет проявлять материнское поведение: охранять детенышей, чистить им шерстку, лизать их. Заблокируйте действие окситоцина у крысы-матери – и она перестанет вести себя по-матерински, даже прекратит выкармливание. Окситоцин работает в обонятельной системе, помогая матери запомнить запах своих детенышей. Вазопрессин, в свою очередь, действует схожим образом, но более слабо.

Вскоре заговорили и о других видах животных. Овцы учатся распознавать своих ягнят по запаху, обезьяны перебирают шерстку своих малышей – и все благодаря окситоцину. Если впрыснуть в нос женщины окситоцин (а именно так удается доставить нейропептид прямо в мозг, минуя гемато-энцефалический барьер), то младенцы покажутся ей более приятными и хорошенькими. Женщины с вариантами генов, производящими в итоге больше окситоцина или окситоциновых рецепторов, чаще прикасаются к своим младенцам, и у них чаще синхронизирован с ними взгляд.

Таким образом, у самок млекопитающих окситоцин играет центральную роль в кормлении детенышей, формировании желания кормить их, а также способствует запоминанию своих детей. Далее на сцене появляются самцы, т. к. вазопрессин участвует в формировании отцовского поведения. У самца-грызуна, который присутствует рядом с рожающей самкой, во всем теле, и в мозге в том числе, увеличивается количество вазопрессина и его рецепторов. У «опытных» отцов-обезьян в лобной коре обнаруживается больше дендритов с вазопрессиновыми рецепторами. Кроме того, введение вазопрессина активирует отцовское поведение.

Быстрый переход