Если пространство было бы конечным, тогда следы этого были бы показаны в статистических свойствах реликтового фона и составляющих его различных частот излучения.
Любопытный аргумент. Всего лишь год назад или где-то около некоторые математики использовали определённые статистические особенности реликтового фона вселенной, чтобы сделать вывод о том, что вселенная не только конечна, но и имеет форму похожую на футбольный[27] мяч. Недостаток излучения с очень большой длинной волны является достаточным основанием для вывода о том, что вселенная слишком мала чтобы вместить волны такой длинны. Так же и гитарная струна длинной в один метр не может поддерживать колебания с длинной волны сто метров — для волны такого размера просто нет подходящего места.
Другие доказательства имеют довольно разную природу — не наблюдения как таковые, а наблюдения о том, как мы толкуем наблюдения. Космологи, которые анализируют фон микроволнового излучения чтобы вычислить форму и размеры вселенной, обычно сообщают о своих выводах в форме " такие формы и размер с вероятностью одна тысячная могут соответствовать нашим данным. " Это означает с 99,9-ти процентной вероятностью мы исключаем такой размер и форму. Тегмарк говорит, что один из способов интерпретации этого, что не более одного объема Хаббла на тысячу такого размера и формы будут проявляться в данных наблюдения. «Урок заключается в том, что теория мультивселенной может быть проверена и признана ошибочна, даже если мы не можем видеть других вселенных. Разгадка в том, чтобы предсказать множество параллельных вселенных и точно определить вероятностное распределение в этом множестве.»
Это замечательный аргумент. Неизбежно он путает фактический объем Хаббла с потенциальным. К примеру если рассматриваемая форма это футбольный мяч длинной 27-плексов метров длинной[28] — справедливое предположение, что для нашего собственного объема Хаббла — тогда вероятность» одна тысячная» это вычисление основанное на потенциальном массиве футбольных мячей такого размера. Они не являются частью одной бесконечной вселенной: они являются различными концептуальными «точками» фазового пространства огромных футбольных мячей.
Если бы вы жили в таком футбольном мяче и производили такие наблюдения, тогда можно ожидать получения таких данных в одном случае их тысячи.
В этом заявлении нет, чего что могло бы заставить нас сделать вывод о существовании всех этих тысяч футбольных мячей в действительности, не говоря уже о том, что все они находятся в одном, куда большем по размеру, о чём нас как раз и просят. Тегмарк просит нас усвоить общий принцип: если у вас есть фазовое пространство (статистики назовут его выборочным пространством) с четко определённым распределением вероятностей, тогда всё что находится в этом должно быть реальным.
А это совершенно не так.
И простой пример показывает почему. Предположим что вы подбросили монетку сто раз. И получили результат вроде ОРОРООРО…ОРОРР. Фазовое пространство всех возможных подбрасываний содержит ровно 2100 таких последовательностей. Если монета правильной формы, то есть разумный способ определить вероятность нашей последовательности — а именно один шанс из 2100. И вы можете проверить такое «распределение» вероятностей множеством косвенных способов. К примеру, вы можете провести миллион экспериментов, каждый из которых включает 100 подбрасываний, и вычислить что соотношение «орла» и «решки» будет 50 на 50 или даже 49 на 51. Такой эксперимент вполне осуществим.
Если принцип Тегмарка верен, то существует целое фазовое пространство всех последовательностей подбрасывания монетки. Не как математическая концепция, а как физическая реальность.
Однако монетки сами себя не подбрасывают. Кто-то же должен это делать. |