Сначала эти линии практически горизонтальны, то есть не являются времениподобными, а значит, не соответствуют движению каких-либо реальных частиц. Однако со временем линии приближаются к вертикали и в конечном счете становятся времениподобными. Как только нам удается пройти этот «временной барьер», мы можем перемещаться между белым и черным концами червоточины, используя обычное пространство — вдоль времениподобной кривой. Поскольку червоточина — это короткий путь, ее можно пересечь за короткое время и практически мгновенно преодолеть пространство, отделяющее черный конец от белого. В итоге вы вернетесь в исходную точку, но окажетесь в прошлом.
Это и есть путешествие во времени.
Выждав нужное время, вы сможете превратить свою мировую линию в ЗВК и оказаться в том же месте и времени, с которого начали свое путешествие. Не назад в будущее, а вперед — в прошлое. Чем дальше в будущем находится исходная точка, тем дальше вы сможете переместиться назад во времени. Правда, у этого метода есть один недостаток: ваши путешествия в прошлое ограничены временным барьером, который возникает через некоторое время после создания червоточин. Так что поохотиться на динозавров или побегать за бабочками Мелового периода вам не удастся.
Можем ли мы в действительности создать одно из таких устройств? Можно ли пройти через червоточину?
В 1966 году Роберт Джероч нашел способ, который в теории позволяет создать червоточину с помощью гладкой деформации пространства времени, без каких-либо разрывов. Правда, есть одна сложность: на определенном этапе сборки ход времени настолько искажается, что червоточина временно начинает действовать, как машина времени, и оборудование, используемое ближе к концу сборки, переносится к ее началу. Инструменты рабочих могут переместиться в прошлое именно в тот момент, когда они решат, что работа закончена. Тем не менее, правильно составленный график работ, вероятно, решает эту проблему. Технологически развитое общество, вероятно, способно конструировать черные и белые дыры и перемещать их с помощью сильных гравитационных полей.
Однако создание червоточины — это не единственная проблема. Нужно еще удержать ее в открытом состоянии. Основная трудность связана с «эффектом кошачьей дверцы»: когда некоторый объект проходит сквозь червоточину, последняя стремится захлопнуться и «прищемить ему хвост». Чтобы этого не произошло, объект, как оказалось, должен двигаться быстрее скорости света, так что приходится искать другое решение. Любая времениподобная линия, которая начинается у входа в червоточину, должна входить в будущую сингулярность. Нельзя преодолеть сингулярность и добраться до выхода, не превысив скорость света.
Традиционный подход к решению этой проблемы состоит в том, чтобы заполнить червоточину «экзотической» материей, создающей огромное отрицательное давление наподобие растянутой пружины. Она отличается от антиматерии, поскольку представляет собой форму отрицательной энергии, в то время как энергия антиматерии положительна. С точки зрения квантовой механики, вакуум — это не пустота, а бурлящее море элементарных частиц, которые непрерывно появляются и исчезают. Нулевая энергия содержит в себе все эти флуктуации, а значит, ослабив их, мы сможем снизить энергию до отрицательного уровня. Достичь этого позволяет, к примеру «эффект Казимира», открытый в 1948 году: между двумя близко расположенными металлическими пластинами возникает состояние отрицательной энергии. Данный эффект был зафиксирован в экспериментах, но оказался довольно слабым. Чтобы получить достаточное количество отрицательной энергии, потребуются пластины размером с галактику. К тому же твердые, чтобы интервал между ними оставался неизменным.
Есть и другой вариант — магнитная червоточина. В 1907 году геометр Туллио Леви-Чивита доказал, что в рамках общей теории относительности магнитное поле может вызывать искажения пространства. |