Световые волны несут намного большую энергию, чем звук, с которым мы сталкиваемся в жизни. Этой световой энергии действительно хватает даже на то, чтобы вызывать в некоторых веществах определенные химические изменения. Живому организму вполне по силам ощутить присутствие света по присутствию или отсутствию каких-либо химических изменений, на которые организм может соответствующим образом реагировать. Для этой цели не обязательно получить в свое распоряжение сложно устроенный световоспринимающий орган. Например, растения тянутся к свету или изгибаются ему навстречу, не имея даже намека па такой орган. Реакция па свет полезна — в этом не может быть никакого сомнения. Все зеленые растения должны расти навстречу свету, поскольку они используют для роста его энергию. Водяные животные находят поверхностный слой воды, двигаясь навстречу свету. На суше свет означает тепло, и животные могут либо искать освещенные солнцем места, либо избегать их, в зависимости от времени года, времени суток и других факторов.
Восприятие света с помощью химического механизма может быть как полезным, так и весьма опасным. В живых тканях с их тонким балансом сложных и ломких соединений случайное воздействие света может стать разрушительным. В эволюционном плане оказалось полезным сосредоточить светочувствительные элементы, содержащие определенные химические вещества, в одном участке. Поскольку химические соединения, составляющие это пятно или участок, должны обладать повышенной чувствительностью к свету, то они будут реагировать на слабый свет, который не способен причинить разрушение тканей. Более того, расположение светочувствительного участка в определенной области организма позволило бы защитить от света остальные участки поверхности тела.
(Для того чтобы свет мог воздействовать на какое-либо вещество так, чтобы в нем произошли химические изменения, это вещество должно в первую очередь поглощать свет. Вообще любое вещество поглощает свет определенной длины волны в большей степени, чем световые волны иной длины. Но мы способны воспринимать различные длины волн, ощущая их как различные цвета, как я объясню ниже в этой же главе. Поэтому, когда мы видим светочувствительное вещество, воспринимая свет, который оно либо пропускает, либо отражает, мы видим это вещество окрашенным в какой-нибудь цвет. По этой причине светочувствительные соединения в организме обычно называют пигментами, то есть окрашенными веществами, в особенности прилагая этот термин к зрительным пигментам.)
Даже у одноклеточных организмов есть светочувствительные участки, но специальные светочу ветвительные структуры развиваются, конечно, только у многоклеточных животных, у которых развивается специальный орган — глаз, предназначенный для фоторецепции, что в переводе с греко-латинского означает «восприятие света».
Простейший фоторецептор способен лишь указать наличие или отсутствие света. Тем не менее, если даже организм имеет в своем распоряжении такую примитивную рецепцию, он уже обладает весьма полезным инструментом. Такое животное может двигаться к свету или удаляться от него. Более того, если яркость света вдруг уменьшилась, то это можно воспринять как определенный стимул: что-то произошло между фоторецептором и источником света. Естественным следствием такого поворота событий может стать бегство, так как это «что-то», вполне вероятно, может оказаться врагом.
Более чувствительный фоторецептор может иметь лучшую конструкцию, и одним из способов увеличения чувствительности является увеличение количества света, падающего на светочувствительный пигмент. Этого можно достичь несколькими путями, поскольку свет не всегда распространяется строго по прямой линии. Когда свет переходит из одной среды в другую, он, как правило, преломляется, то есть изменяет направление своего движения. Если поверхность раздела сред плоская, то весь свет, падающий на эту поверхность, преломляется как бы единым блоком. (Это так только в том случае, если все лучи имеют одинаковую длину волны. |