д.
Если число аминокислот в пептиде превышает дюжину, но не доходит до сотни, то такое соединение называют полипептидом («поли» по-гречески «много»). Секретин и другие гормоны подобной природы построены из аминокислотных цепей, содержащих больше дюжины, но меньше сотни аминокислотных остатков, и поэтому их иногда называют не белковыми, а полипептидными гормонами.
Сказав, что секретин является полипептидным гормоном, по логике вещей надо сделать следующий шаг и решить, какие аминокислоты содержатся в его молекуле и сколько каждой из них. К сожалению, это не слишком простая задача. Секретин образуется в весьма малых количествах, и при выделении его из ткани двенадцатиперстной кишки попутно выделяется еще несколько белков. Присутствие этих примесей, естественно, затрудняет анализ.
Однако в 1939 году секретин удалось получить и кристаллах (только чистый белок может быть получен в такой форме). После анализа кристаллов секретина было выяснено, что каждая его молекула состоит из следующих аминокислот, трех остатков лизина, двух аргинина, двух пролина, одного гистидипа, одного глютаминовой кислоты, одного аспарагиновой кислоты и одного метионина. Таким образом, молекула секретина содержит 11 видов аминокислот, а всего в ней содержится 36 аминокислотных остатков. Используя сокращения Бранда можно записать формулу секретина следующим образом: lys3arg3pro2his1glu1asp1met1X25
Буквой «X» обозначена неизвестная аминокислота.
Но даже определив все аминокислоты, содержащиеся в молекуле секретина, мы все равно столкнулись бы с проблемой выяснения точной структуры его молекулы. Нам осталось бы выяснить, в какой последовательности расположены аминокислоты в полипептидной цепи секретина. Если, допустим, вы знаете, что в некоем четырехзначном числе есть две шестерки, четверка и двойка, то все равно остается неопределенность относительно того, с каким числом вы имеете дело. Это может быть 6642, 2646, 4662 или любое из ряда других сочетаний. В математике существуют стандартные способы вычисления возможных сочетаний, которые можно построить из различных наборов единиц, и результаты таких вычислений потрясают воображение. Положим, что состоящая из 36 аминокислот молекула секретина содержит по две из восемнадцати различных аминокислот. Общее количество возможных последовательностей превысит число 1 400 000 000 000 000 000 000 000 000 000 000 000.
Это может показаться невероятным, но дело обстоит действительно так. И это, заметьте, касается мелкой белковой молекулы. Положение с белковыми молекулами средней величины намного сложнее, и этот факт может дать вам представление о том, с какими трудностями столкнулись биохимики, пытаясь выяснить строение белковых молекул.
Еще более поразительный факт, однако, заключается в том, что после Второй мировой войны биохимикам удалось разработать гениальную технологию, с помощью которой можно было отныне определять точную последовательность аминокислотных остатков в белковых молекулах (находя одну-единственную возможность из бесчисленных триллионов возможных комбинаций).
Выделение сложности структуры белковой молекулы, только что продемонстрированной на примере секретима, вызывает удивление перед способностью клетки вырабатывать такие сложные молекулы правильно, выбирая одну структуру из всех возможных. В действительности это ключевой химический процесс в живых тканях, подробности которого были частично раскрыты в течение последнего десятилетия.
Даже если мы допустим, что клетка может вырабатывать правильно построенные молекулы белка, то может ли она с нуля делать это столь быстро, что следовые количества кислоты в желудке могут вызвать настоящий поток секретина в кровеносное русло? При всем уважении к клетке такого трудно ожидать, и действительно начинается выброс секретина в кровь отнюдь не с нуля.
Секретин — продуцирующие клетки слизистой оболочки двенадцатиперстной кишки — готовят молекулы вещества, называемого просекретином («предсекретина»), находясь в состоянии покоя. |