Изменить размер шрифта - +
Пора уяснить, что реальность — не Среднестан и нам надо научиться с этим жить.

 

«Греки бы его обожествили»

 

Список людей, у которых в мозгу угнездилась (благодаря своей платонической чистоте) гауссиана, невероятно велик.

Сэр Фрэнсис Гальтон, двоюродный брат Чарльза Дарвина и внук Эразма Дарвина, был наряду со своим кузеном одним из последних независимых ученых-джентльменов, к каковым также принадлежали лорд Кавендиш, лорд Кельвин, Людвиг Витгенштейн (на свой лад) и отчасти наш суперфилософ Бертран Рассел. Хотя Джон Мэйнард Кейнс не вполне вписывался в эту категорию, он мыслил в унисон с ней. Гальтон жил в викторианскую эпоху, когда обладатели наследственного состояния и неограниченного досуга не только упражнялись в верховой езде и стрельбе по дичи, но становились философами, учеными или (менее одаренные) политиками. Как это ни печально, вместе с той эпохой ушло нечто невосполнимое: истинные подвижники, занимающиеся наукой ради науки, не думающие о карьере.

К сожалению, занятия наукой из бескорыстной любви к знанию не гарантируют, что ты будешь двигаться в правильном направлении. Познакомившись с «нормальным» распределением, Гальтон влюбился в него. Говорят, он однажды воскликнул, что, если бы грекам было о нем известно, они бы обожествили его. Возможно, восторг Гальтона тоже поспособствовал воцарению гауссианы в научных умах.

Гальтон не сподобился обзавестись надлежащим математическим багажом, но был прямо-таки одержим измерениями. Он не знал о законе больших чисел, но сам открыл его, проанализировав собранные данные. Он сконструировал доску Гальтона, или «quincunx», — что-то вроде автомата для игры в пинбол, с помощью которого можно смоделировать колоколовидную кривую, — об этом я расскажу через несколько абзацев. Правда, Гальтон применял кривую нормального распределения в таких областях, как генетика и наследственность, где ее использование оправданно. Но его энтузиазм помог внедрить зарождавшиеся статистические методы в социальные сферы.

 

Ответьте, пожалуйста, «да» или «нет»

 

А сейчас позвольте мне поговорить о размерах ущерба.

Если вам нужны качественные (а не количественные) выводы, как в психологии или медицине, где вы вполне обойдетесь «безразмерными» ответами «да» или «нет», то можете спокойно допустить, что находитесь в Среднестане. Влияние невероятного не будет слишком большим. У него есть рак либо нет; она беременна либо нет и так далее. Смертельность или беременность не имеют степеней (если не рассматривать их в эпидемических масштабах). Но, когда вы манипулируете совокупностями, различными по величине (такими как доход, ваш капитал, прибыль с портфеля ценных бумаг или продажи книг), гауссиана может вас здорово подвести, так как эта сфера не в ее компетенции. Одно-единственное число способно порушить все ваши средние показатели; одна-единственная потеря — зачеркнуть сотни и сотни прибылей. Уже нельзя говорить: «Это исключение». Заявление «да, я могу потерять деньги» довольно бессмысленно, если не указать хотя бы приблизительную сумму. Потерять весь свой капитал или потерять долю своего дневного дохода — все-таки разница.

Именно поэтому эмпирическая психология и открытые ею свойства человеческой природы, о которых я говорил в начале этой книги, не страдают от ложного использования гауссианы; психологам вообще повезло, ибо переменные, которыми они оперируют, в большинстве своем не выходят за рамки обычной гауссовой статистики. Выясняя, сколько человек в выборке имеют определенную особенность или склонность к ошибке, они обычно добиваются результата посредством ответов «да» или «нет». Ни одно отдельно взятое наблюдение не может в корне изменить общего заключения.

Теперь я представлю вам идею гауссианы, разобрав ее по кирпичикам.

Быстрый переход