Изменить размер шрифта - +
Я называю это проблемой маскарада.

Скажем, я генерирую процесс с экспонентой 1,7. Вы не видите работы генерирующего устройства, а только ряд полученных данных. Если я спрошу, какова экспонента, вы с большой долей вероятности остановитесь на чем-то вроде 2,4. Итог будет таким даже при миллионе показателей. Причина в том, что некоторым фрактальным процессам нужно очень много времени, чтобы раскрыть свои свойства, и вы недооцениваете силу вероятного всплеска.

Иногда фрактал может умело замаскироваться под гауссиану, особенно когда «разветвление» начинается с большого числа. У фрактальных распределений всплески такого рода настолько редки, что мы теряем бдительность: мы не распознаем их фрактальную структуру.

 

Снова о лужице

 

Из всего вышесказанного вы уже наверняка поняли, что, какую бы модель мы ни признавали властительницей мира, узнать ее параметры непросто. Так что в связи с Крайнестаном вновь встает проблема индукции, на сей раз еще более остро, чем в любой из предыдущих глав. Говоря по-простому, если процесс имеет фрактальный характер, он оперирует громадными величинами, а значит, есть вероятность громадных отклонений, но насколько часто эти отклонения будут возникать, трудно сказать мало-мальски уверенно. Это напоминает проблему лужицы: она могла образоваться из самых разных кубиков льда. Как человек, который идет от реальности к возможным объясняющим моделям, я встречаюсь с массой проблем совершенно иного свойства, чем проблемы тех, кто поступает наоборот.

Я только что прочел три «научно-популярные» книги, посвященные исследованиям сложных систем: «Вездесущесть» Марка Бьюкенена, «Критическую массу» Филипа Болла и «Почему мало что удается» Пола Ормерода. По мнению этих трех авторов, мир социальных наук полон степенных законов, и с таким взглядом я конечно же согласен. Они также заявляют, что многие из явлений такого порядка на самом деле универсальны, что есть удивительное сходство между разными процессами в природе и поведением социальных групп, с чем я тоже согласен. Подкрепляя свои исследования теориями различных сетей, они указывают на поразительное соответствие между так называемыми критическими явлениями в естественных науках и самоорганизацией социальных групп. Они объединяют процессы, порождающие лавины, социальные поветрия и «информационные каскады», с чем я опять же согласен.

Универсальность — одна из причин, по которым степенные законы, связанные с критическими точками, особенно интересуют физиков. Есть много ситуаций как в теории динамических систем, так и в статистической механике, когда многие свойства динамики возле критической точки не зависят от особенностей действующей динамической системы. Экспонента в критической точке может быть одинаковой для многих систем одной группы, даже если во многом другом системы различны. Я почти согласен с такой трактовкой универсальности. Наконец, все три автора призывают нас применять методы статистической физики, сторонясь эконометрики и гауссоподобных немасштабируемых распределений, как разносчиков чумы, в чем я с ними полностью солидарен.

Но все три автора, добиваясь точности или призывая к ней, допускают просчет, смешивая прямые и обратные процессы (задачу и обратную задачу), — что для меня есть величайший научный и эпистемологический грех. Они неодиноки в этом; почти каждый, кто работает с данными, но не принимает решений на основе этих данных, подвержен тому же греху, разновидности искажения нарратива. В отсутствие обратной связи ты смотришь на модели и думаешь, что они подтверждают реальность. Я верю в идеи этих трех книг, но не в способ их применения — и уж конечно не в точность, которую авторы им приписывают. На самом деле теория сложности должна учить нас подозрительнее относиться к научным разработкам «точных» моделей реальности. Она не делает всех лебедей белыми, это ясно; она делает их Серыми, и только.

Быстрый переход