У другой Фрэн белокурые волосы пышнее, но не светлее, чем у реальной. И у той, и у другой они подстрижены одинаково просто, короткой шапочкой. Здесь Фрэн носит очки, однако ярко-голубые, немного запавшие глаза обеих одинаково светятся умом и спокойствием.
Она единственный известный мне человек, который почти таков, каким ему следует быть.
- Это последнее семейство фазовых пространственных диаграмм*, - сказала она. - Компьютер их только что отработал, я даже не успела сделать распечатку.
Я примостился рядом с ней, взглянул на изображение и заметил:
- По-моему, это выглядит не более беспорядочным, чем предыдущее семейство.
- Добавь - к несчастью. Все то же, все одно и то же.
Она рассмеялась шутке: в теории хаоса не бывает ничего повторяющегося. Фазовые диаграммы были чрезвычайно сложными и всегда иными, если не вмешиваться в процесс. Но не абсолютно хаотичными. Какая-то регулярность все же проглядывалась, только мы ее пока не могли выявить с нашим математическим аппаратом. Не могли найти ключ. Пока не могли.
Идеал, которого никто не видел.
- Мне все кажется, твоя молодая голова может обнаружить то, что я упустила, - сказала Фрэн. - Дам тебе распечатку. Кстати, Питер Соленски опубликовал в Берлине новую работу; тебе стоит ознакомиться. Я нашла ее в Сети и переслала тебе по электронной почте.
Я молча кивнул. Впервые за этот день душа моя наполнилась покоем.
Спокойствие.
Упорядоченность.
Числа.
Фрэн посвятила свою жизнь чистой математике. Ее работы были безукоризненны, но славы не принесли, прошли незамеченными. Последние годы она работала со мной, своим бывшим студентом. Мы погрузились в суровый и строгий мир теории итерированных функций, где результат решения заданного уравнения используется для последующего решения того же уравнения. При таких действиях результат предсказуем: последовательности сводятся к определенному набору чисел. Неважно, какое исходное значение введено в уравнение - при достаточном количестве итераций вы приходите к одному и тому же выражению, называемому аттрактором. Каждое уравнение дает набор аттракторов, которые по мере итерирования сходятся воедино, примерно как домашние голуби слетаются к своей голубятне.
Но только до тех пор, пока вводимое значение не превысит величины, называемой "числом Файгенбаума". Тогда полученные вами последовательности теряют всякую упорядоченность. Нет никакого общего рисунка. Аттракторы исчезают. Поведение самых простых уравнений становится хаотическим. Голуби разлетаются в разные стороны, наугад, слепые и заблудшие.
Или все-таки не слепые?
Фрэнсис (а вместе с ней еще с десяток теоретиков во всем мире) пыталась анализировать этот хаос, классифицировала его. И в какой-то миг ей показалось, что в "полете голубей" и впрямь есть намек на упорядоченность. Хаотический порядок, управляемая беспорядочность. Мы рассмотрели нелинейные дифференциальные уравнения и их аттракторы, где при итерировании значения не сходятся, а расходятся.
Выражения, которые исходно различались на бесконечно малые величины, расходятся все больше, больше и еще больше, продвигаясь к скрытым значениям, вполне уместно именуемым странными аттракторами. Голубей из одной голубятни несет сквозь кажущийся хаос к месту, которое мы можем идентифицировать, но не в состоянии проверить, существует ли оно.
Фрэнсис и я вывели гипотетический набор уравнений для этих идеализированных мест.
Но - только гипотетический.
Что-то было не так. Мы упустили нечто важное, не сумели увидеть его. Оно было, я это твердо знал, но мы не разглядели. Если мы его найдем, будет доказано, что любая физическая система, весьма сильно зависящая от исходных условий, должна иметь странный аттрактор, запрятанный в каком-то месте ее структуры. Необычайно важное открытие для математики хаоса, а отсюда и новые перспективы в гидродинамике, управлении погодой.
И для меня. |