Искусственные нейронные сети работают так: одни нейроны соединены с другими нейронами связями, имитирующими синапсы. Каждый нейрон считывает входные данные с других нейронов и в ответ меняет собственный уровень активности. Сеть учится, позволяя входным сигналам менять силу нейронных связей. Сила связей определяет вероятность того, будут ли нейроны ввода возбуждать или подавлять нейроны вывода.
В зависимости от того, за что отвечают нейроны, каким образом они связаны изначально и как связи меняются в процессе обучения, коннекционистская сеть может научиться вычислять разные вещи. Если каждый нейрон соединен со всеми прочими, сеть может выделить связи между отдельными свойствами и объединить их в класс объектов. Например, после предъявления описаний множества птиц она может предположить, что поющие объекты с перьями, вероятно, умеют летать, или что летающие объекты, покрытые перьями, поют, или что поющие летающие объекты обычно покрыты перьями. Если слой нейронов ввода связан со слоем нейронов вывода, сеть научится ассоциировать понятия, например: мягкие маленькие летающие объекты — это животные, а большие металлические летающие объекты — транспортные средства. Если слой вывода имеет обратную связь с предыдущими слоями, сеть может штамповать упорядоченные последовательности, например звуки, создающие слово.
Привлекательность нейронных сетей в том, что они автоматически распространяют усвоенные знания на новые похожие объекты. Если сеть научили, что тигры едят глазированные хлопья, она будет склонна к обобщению, что львы тоже едят глазированные хлопья, потому что «поедание глазированных хлопьев» ассоциировано не с «тиграми», а с более простыми характеристиками, вроде «рычания» и «усов», которые относятся и ко львам тоже. Коннекционистская школа, как и школа ассоцианизма Локка, Юма и Милля, доказывает, что в этих обобщениях состоит суть интеллекта. Если это так, то обученная — но в остальном обычная — нейронная сеть может объяснить разум.
Специалисты по компьютерным моделям часто применяют их к упрощенным задачам, чтобы доказать, что они могут работать в принципе. Вопрос тогда ставится так: можно ли масштабировать эти модели для решения более реалистичных задач или, как говорят скептики, исследователи «лезут на дерево, чтобы достать луну»? В этом и состоит проблема коннекционизма. Простые коннекционистские сети могут убедительно демонстрировать память и способность к обобщениям в простых задачах, таких как чтение списка слов или запоминание общих свойств животных. Но им не хватает мощности, чтобы воспроизвести реальные способности человеческого интеллекта, например понять смысл предложения или рассуждать о живых существах.
Люди не просто свободно ассоциируют похожие друг на друга вещи или вещи, которые часто появляются одновременно. Их разумы комбинаторны, они учитывают утверждения, что верно для чего и кто, что, кому, где, когда и зачем сделал. Это требует вычислительной конфигурации гораздо более сложной, чем стандартное переплетение нейронов в неспециализированных коннекционистских сетях. Конфигурации, оборудованной логическим аппаратом: правилами, переменными, утверждениями, состояниями цели и различными видами структур данных, организованных в системы высшего уровня. На эту проблему обращали внимание многие когнитивисты, в том числе Гари Маркус, Марвин Мински, Сеймур Паперт, Джерри Фодор, Зенон Пилишин, Джон Андерсон, Том Бивер и Роберт Хадли. Ее признают и исследователи нейронных сетей, не принадлежащие к коннекционистской школе, например Джон Хаммел, Локендрой Шастри и Пол Смоленски. Я сам много писал об ограничениях коннекционизма и в своих исследованиях, и в популярной литературе и ниже подвожу итог моих собственных рассуждений.
В книге «Как работает мозг» (How the Mind Works) в разделе под названием «Коннектоплазма» я описываю некоторые простые логические взаимосвязи и способности, лежащие в основе нашего понимания завершенной мысли (такой, как смысл предложения), которые сложно реализовать с помощью неспециализированных сетей. |