Авторы, использующие пластичность для подкрепления концепции «чистого листа», полагают, что, если первичная сенсорная кора пластична, остальной мозг должен быть еще более пластичен, потому что разум строится на сенсорном опыте. Например, по словам одного нейроученого, эксперимент Сура по изменению связей в мозге «ставит под сомнение то значение, которое недавно придавалось генам» и «возвращает людей к более высокой оценке роли окружающей среды в формировании нормального мозга».
Но если мозг — это сложный орган, состоящий из множества частей, для подобных выводов нет оснований. Первичная сенсорная кора — это не краеугольный камень разума, а устройство, одно из многих, предназначенное для обработки определенных видов сигналов на первых стадиях сенсорного анализа. Представим, что первичная сенсорная кора бесформенна, а структуру ей придают исключительно входные сигналы. Значило бы это, что весь мозг не имеет структуры и получает ее лишь из информации на входе? Вовсе нет. Начнем с того, что даже первичная сенсорная кора — это только одна из частей огромной сложной системы. Чтобы представить вещи в более широком контексте, ниже приведена современная диаграмма связей внутри зрительной системы приматов (см. рис. ниже).
Первичная зрительная кора — блок внизу, обозначенный VI. Это лишь одна из как минимум 50 отдельных областей мозга, занятых обработкой визуальной информации. (Несмотря на то что схема напоминает сваренные спагетти, не каждый элемент с чем-то связан. На самом деле мозг создает только третью часть всех теоретически возможных связей.) Первичной зрительной коры как таковой недостаточно, чтобы видеть. На самом деле она настолько глубоко скрыта в визуальной системе, что Фрэнсис Крик и нейроученый Кристоф Кох доказывали, что мы не осознаем ничего, что там происходит. То, что мы видим, — знакомые разноцветные объекты, расположенные в определенном порядке или двигающиеся по определенным траекториям, — результат работы этого хитроумного изобретения в целом. Так что даже если внутреннее строение блока VI полностью определяется поступающей из внешнего мира информацией, нам придется объяснить архитектуру остальной части зрительной системы — 50 других блоков и связей между ними. Я не утверждаю, что генетически запрограммирована вся диаграмма целиком, но ее бо́льшая часть — скорее всего, да.
И конечно, зрительную систему тоже нужно поставить на свое место, потому что это только часть мозга. В коре насчитывается более 50 зон с различными связями и анатомией, и зрительная система преобладает примерно в полудюжине из них. Другие зоны обеспечивают прочие функции — язык, мышление, планирование, социальные навыки. И хотя никто не знает, до какой степени они генетически предуготовлены для выполнения своих вычислительных ролей, есть основания считать, что влияние генов значительно. Разделение закладывается еще в утробе, даже если кора в процессе развития отрезана от сигналов из внешнего мира. Когда мозг развивается, в различных его областях активируются разные наборы генов. Мозг обладает целым комплектом механизмов для установления связей между нейронами, включая молекулы, которые притягивают или отталкивают аксоны (выходные волокна нейронов), чтобы направить их к цели, и молекулы, которые приклеивают их в нужном месте или же, наоборот, мешают присоединению. Число, размер и возможность образования связей в корковых зонах разные у разных видов млекопитающих, различаются они и среди людей и других приматов. Это разнообразие — продукт генетических мутаций в процессе эволюции, в чьи тайны мы только начинаем проникать. Например, недавно генетики обнаружили, что в развивающемся мозге человека и в развивающемся мозге шимпанзе активны различные наборы генов.
Под микроскопом разные части коры не отличаются друг от друга, что, как кажется, противоречит предположению о функциональной специализации зон коры. |