Это особенно хорошо видно на примере внедрения в радиотехнику полупроводников.
Как только были созданы первые образцы кристаллических усилителей, стало ясно, что размеры радиоаппаратов могут быть резко уменьшены. Но тут же возник вопрос: а антенна? Неужели она останется такой же длинной, как и раньше? Или, скажем, индукционные катушки, конденсаторы? Ведь если их не уменьшить, получится диспропорция {126} — и не только в размерах деталей, но и в их техническом уровне. В самом деле, ставить громоздкую проволочную катушку рядом с крошечным, идеальным по простоте и совершенству полупроводниковым усилителем — это, пожалуй, все равно, что освещать свечами поезда метрополитена. Так назрела задача: преобразовать буквально все радиодетали, перевооружить всю практическую радиотехнику.
И снова здесь пришли на помощь полупроводники, в первую очередь — материалы, называемые ферритами.
Каждый видел подкову магнита. Вы найдете ее в громкоговорителе, в любом электрогенераторе, в магнето автомобиля. Постоянные магниты имеют серьезный недостаток — они тяжелы. Чтобы облегчить их, металловеды разработали специальные сплавы. Некоторые из них весьма ценны. Но металл все же очень легким не сделаешь.
Отметим и другую особенность металлических магнитных материалов: они отлично проводят электрический ток. Это свойство в ряде случаев применяется с пользой — например, при высокочастотной закалке. Переменное поле разгоняет в металле электроны. Там возникают вихри электрических токов, которые быстро повышают температуру. Здесь это и требуется. Зато в других случаях нагрев вреден.
Возьмем, к примеру, сердечник трансформатора. Его совсем не нужно греть. Ведь на это уходит лишняя энергия. К тому же вихревые токи не дают магнитному металлу быстро размагничиваться и намагничиваться, тормозят такие процессы. А в современных радиоаппаратах часто необходимы весьма «поворотливые» магнитные вещества.
Много труда положили электрики и радиотехники, чтобы избавиться от вихревых токов. Сердечники трансформаторов, дросселей, катушек решили набирать из тонких железных пластинок, покрытых изоляционным лаком. Делали такие сердечники из изоляционной массы со вкрапленными в нее железными опилками. Пользу это кое-какую {127} приносило, но хотелось большего. Идеально было бы найти легкие магнитные вещества, почти совсем не проводящие электрический ток.
Именно такими оказались ферриты.
КЕРАМИЧЕСКИЕ МАГНИТЫ
Вид у ферритов совсем будничный. Серо-черные невзрачные пластинки, колечки, стерженьки. Сделаны они из самых обычных, широко распространенных в природе веществ — из окислов железа и некоторых других металлов. Обыкновенная руда магнетит тоже относится к ним.
Еще в прошлом столетии химики знали состав подобных соединений, их внутреннюю структуру, основные свойства. Казалось, наука давно взяла от них все, что они могут дать человеку.
Но в действительности вышло иначе. Несколько лет назад за исследование ферритов взялись физики. Они стали их размалывать в порошок, смешивать в разных пропорциях, прессовать, обжигать, спекать. И выяснилось, что, если такие материалы специальным образом обработать, они приобретают разнообразные и очень ценные сочетания электрических свойств с магнитными.
Есть среди ферритов материалы, которые молниеносно намагничиваются даже в слабом магнитном поле и также быстро меняют намагниченность в такт с переменами магнитного поля. Обмотанный проволокой стерженек из такого материала может служить отличной антенной.
Такие стерженьки можно увидеть сейчас во многих новых радиоприемниках и телевизорах. Антенны настолько невелики, что их монтируют прямо в корпусе. Например, приемник «Дорожный» оснащен антенной длиной в карандаш. Она заменяет много метров металлической проволоки. Магнитная ферритовая антенна может быть даже величиной со спичку! {128}
Ферритовые сердечники для катушек, трансформаторов, дросселей — чудесный подарок радиотехнике. |