Изменить размер шрифта - +

Гидролокация сродни радиолокации. Излучатель с подлодки посылает в воду короткий звуковой импульс. Затем производится автоматическое переключение на приемное устройство, и излучатель превращается в гидрофон, способный принять эхо. Типичный гидролокационный излучатель представляет собой «акустический прожектор». Он может изменять направление относительно курса лодки, а иногда и наклон посылаемого звукового пучка. Расстояние до обнаруженного объекта вычисляется по времени пробега посланного импульса.

Таковы в главных чертах устройство и действие любой подводной лодки. Для возникновения сегодняшней флотилии научно-исследовательских подводных судов не потребовалось революционных технических изобретений или ломки прежних понятий, как это случилось при покорении космоса.

Подводное кораблестроение сложилось как самостоятельная отрасль судостроения еще на рубеже XIX и XX столетий. Но почему же научно-исследовательские подводные лодки строятся и спускаются на воду только сейчас? Такой вопрос может возникнуть у многих так же, как он волновал меня в 1957 году во время работы над проектом переоборудования боевой подводной лодки в «Северянку». Смонтировать иллюминаторы, установить вместо вооружения научную аппаратуру — эти задачи для судостроителей не представили бы особых затруднений, если бы их пришлось решать и раньше. Но таких задач до последнего времени никто и не ставил.

Очевидно, главные причины массового появления научно-исследовательских подлодок следует искать не в прогрессе техники, который, несомненно, в таких случаях всегда играет способствующую роль, а в изменившемся отношении человечества к океану и его потенциальным возможностям. На развитие океанологии и других морских наук, куда в первую очередь входят исследования, направленные на развитие рыболовства, стали выделяться более крупные средства. Растущее внимание к океану заставило по-новому посмотреть и на подводную лодку — с точки зрения ее пригодности для науки.

К сегодняшнему дню число подводных судов науки, по-видимому, уже превысило 150, если относить сюда и подлодки, которые, как обычно указывают в рекламных проспектах фирмы-изготовители, строятся и могут использоваться не только для научных, но и для производственных и туристских целей — в зависимости от спроса. Примером могут служить построенные западногерманской фирмой «Сильвестр» двухместные лодочки с рабочей глубиной погружения 35 метров. Первая партия из 15 таких лодок была изготовлена еще в июне 1964 года, следующая партия, около 20 штук, была поставлена во Францию и Италию.

Исследовательские подлодки более маневренны, чем боевые. Некоторые из них имеют вертикальный мотор для зависания подобно вертолету, другие для улучшения поворотливости снабжены добавочным носовым или кормовым винтом, иногда в так называемой поворотной насадке. Характерно, что блюдцеобразные лодки, отдаленно напоминающие своей формой донных рыб, например камбал, обладают хорошей маневренностью в горизонтальной плоскости, а лодки, поперечное сечение которых подобно сечению тела рыб, обитающих в толще воды, хорошо маневрируют по вертикали.

Большинство используемых сейчас для научных целей лодок имеет малую скорость, незначительную дальность плавания и рассчитано на умеренные глубины. С одной стороны, малая скорость — это достоинство. Именно медленное движение, граничащее с остановками, создает наилучшие условия для поиска объектов, их рассматривания, уменьшает влияние подлодки как источника механических колебаний на окружающую среду, экономит энергию аккумуляторной батареи и, следовательно, позволяет дольше оставаться под водой. Но, с другой стороны, при небольшой скорости лодка хуже управляется, она не может противостоять течению, быстро переходить из одной точки наблюдения в другую или перемещаться. Удерживать движущийся объект (например, буксируемый прибор или рыболовный трал) в поле видимости или слышимости для такой лодки — задача невыполнимая.

Быстрый переход