Изменить размер шрифта - +
13).

РИС. 13. Обзор мелких масштабов и единиц длины, используемых для их описания

Разумеется, многие объекты, с которыми мы имеем дело, формируются путем простого сложения множества одинаковых фундаментальных элементов, в них нет почти ничего интересного — ни деталей, ни внутренней структуры. Такие экстенсивные системы строятся, как кирпичные стены. Можно сделать стену выше или ниже, добавив или убрав несколько кирпичей, но базовая функциональная единица в ней всегда будет одинакова. Высокая стена фактически ничем не отличается от маленькой стенки. В качестве примера можно привести множество крупных систем, которые строятся за счет добавления в них однотипных элементов. Это относится, к примеру, к микросхемам компьютерной памяти, состоящим из большого количества совершенно одинаковых транзисторов.

Другой тип масштабирования, применимый к крупным системам, — это экспоненциальный рост; такой вариант наблюдается в тех случаях, когда поведение системы определяют не столько фундаментальные элементы, сколько связи между ними. Хотя такие системы тоже увеличиваются с добавлением элементарных «кирпичиков», их поведение определяется не просто числом элементов, а количеством связей. Эти связи возникают не только между соседними элементами, как у настоящих кирпичей, они могут протянуться на некоторое расстояние внутри системы к другим элементам. Примерами могут служить нейронные системы, которые состоят из множества синапсов, связывающих клетки при помощи специальных белков, и Интернет, включающий в себя множество связанных между собой компьютеров. Эти системы сами по себе достойны самого тщательного изучения, и некоторые направления физики действительно имеют дело с соответствующим эмерджентным поведением.

Но физика элементарных частиц не занимается сложными многокомпонентными системами. Напротив, она сосредоточена на обнаружении и распознавании элементарных компонентов и физических законов, которым они подчиняются. Физика элементарных частиц занимается базовыми физическими величинами и их взаимодействиями. Эти мельчайшие компоненты, разумеется, значимы для всех типов сложного поведения, в которое вовлекается множество компонентов. Но наша цель здесь — определить наиболее мелкие базовые компоненты и разобраться в их поведении.

Если говорить о технических и биологических системах, то составные части более крупных систем тоже обладают внутренней структурой. В конце концов, компьютеры построены на микропроцессорах, которые, в свою очередь, построены на транзисторах. А врач, заглядывая внутрь человеческого организма, видит там органы, кровеносные сосуды и все остальное — и все это состоит из клеток и ДНК, которые можно наблюдать только при помощи достаточно сложных приборов. Работа внутренних элементов ничем не напоминает то, что мы наблюдаем на поверхности. С уменьшением размеров элементы, из которых состоят макрообъекты, меняются. Законы, которым эти элементы подчиняются, — тоже.

История изучения человека как организма в некоторых отношениях напоминает историю изучения законов физики; здесь существуют свои масштабы, и их исследование тоже шло от крупного к мелкому. Поэтому, прежде чем обратиться к физике и внешнему миру, давайте отвлечемся ненадолго, подумаем о себе и рассмотрим, как были открыты некоторые — самые известные — аспекты внутреннего устройства человеческого тела.

Возьмем, к примеру, ключицу. По–английски, кстати говоря, эта кость называется «воротниковой» (collarbone), потому что при внешнем осмотре действительно напоминает воротник. Но стоило ученым заглянуть внутрь тела человека, и на этой кости обнаружился своеобразный выступ-«ключ», который и дал кости второе название — clavicle (от лат. clavicula — ключик, втулка).

Точно так же никто не понимал, как устроена у человека система кровообращения, как капилляры соединяют артерии и вены, пока в XVII в. Уильям Гарвей не провел серию педантичных опытов по исследованию сердца и кровеносной сети у животных и человека.

Быстрый переход