Изменить размер шрифта - +

Требующие эластичного мышления задачи могут быть для современного компьютера непосильными, даже если для человека они обыденны. Возьмем распознание закономерностей. Экономист из Массачусетского технологического института Дэвид Отор рассуждает о трудности визуального распознания стула. Эту задачку решит любой школьник, но как запрограммировать компьютер, чтобы и у него получилось? Можно попробовать определить ключевые характеристики – горизонтальная поверхность, спинка, ножки. К сожалению, этот набор черт присущ многим предметам, которые не стулья, – например, кухонная плита с ножками или встроенная мойка с фартуком. Вместе с тем существуют стулья без ножек, и они под это определение не подпадут.

Определить стул, основываясь на рациональном описании с опорой на те или иные правила, трудно, поскольку определение должно включать не только типовые стулья, но и громадное разнообразие оригинальных моделей. Как же это удается любому третьекласснику? Эластичное мышление – не алгоритмическое, и под этим я подразумеваю, что мы овладеваем идеями и делаем выводы без четкого определения необходимых для этого шагов. (Это я говорю независимо от того, получится ли симулировать деятельность мозга при помощи машины Тьюринга, как некоторые считают.) Напротив, нейронная сеть нашего бессознательного ума не полагается на продуманные и легко формулируемые определения стула, а научается взвешивать сложную комбинацию особенностей предмета, а мы эту работу ума даже не осознаем.

Некоторые смекалистые передовые программисты в «Гугле» пытаются усовершенствовать обычные компьютеры, ища способы имитировать работу нейронных систем человеческого мозга. Тамошние ученые построили машину, способную без помощи человека распознавать очертания, которые мы именуем котом. Этот подвиг потребовал тысячи компьютеров, объединенных в сеть. Ребенок же справляется с этой задачей к своим трем годам, попутно жуя банан и размазывая арахисовую пасту по стенке.

Это подводит нас к некоторым ключевым различиям в архитектуре мозга и цифровых компьютеров, что, в свою очередь, говорит кое-что важное о нас самих. В отличие от человеческого мозга, компьютер состоит из взаимосвязанных переключателей, в которых можно разобраться по коммутационным и логическим схемам, и работают они, следуя отчетливо определенному набору шагов (программе или алгоритму) линейно, в соответствии с задачей, имеющейся у программиста. Ученые из «Гугла», соединившие в нейронную сеть тысячу таких вот компьютеров, совершили впечатляющий подвиг, и это многообещающий подход. Но наши мозги способны на неизмеримо более грандиозные подвиги – на формирование нейронных сетей из миллиардов клеток, и каждая при этом связана с тысячей других. Из таких сетей складываются еще более масштабные структуры, а те в свою очередь – в еще более громадные, и далее, и далее, в сложнейшую иерархическую схему, которую ученые только-только начинают постигать.

Как я уже говорил, биологический мозг способен обрабатывать данные и сверху вниз, как это делает традиционный компьютер, и снизу вверх, что важно для эластичного мышления, – а также в некотором сочетании этих двух режимов. Как мы еще убедимся в Главе 4, процессы, происходящие снизу вверх, зарождаются из сложных и сравнительно «безнадзорных» взаимодействий миллионов нейронов и способны приводить к самым неожиданным свежим замыслам. Процессами же, происходящими снизу вверх, напротив, управляют исполнительные области мозга, и в этих процессах пошагово производится аналитическая мысль.

Наш исполнительный ум успешно подавляет мысли, возникающие невпопад. Но если мы решаем некую задачу и идем в неверном направлении, мысли невпопад – шаги не гуськом – как раз

Бесплатный ознакомительный фрагмент закончился, если хотите читать дальше, купите полную версию
Быстрый переход