Изменить размер шрифта - +
 е. пластинку соединить с положительным полюсом батареи, а сетку — с отрицательным, ток в цепи не появляется, из какого бы металла не были сделаны диски.

Заинтересованный этим необычным физическим явлением, Столетов ставит всё новые и новые опыты.

Он устанавливает, что действие света на диски практически мгновенно: достаточно осветить пластинку на 1/150 долю секунды, как гальванометр уже отмечает возникший электрический ток.

Он пробует освещать диски светом от различных источников: светом электрической дуги, бензиновой горелки, светом солнца. И приходит к выводу, что лучше всего действуют лучи электрической дуги.

Наконец, Столетов проводит ещё более интересный опыт. Он удаляет из своей установки электрическую батарею и освещает совершенно незаряженные пластинки.

И в этом случае в цепи возникает электрический ток!

Сплошная металлическая пластинка заряжается при этом положительным электричеством.

Свет рождал электричество!

Это явление, впервые подробно изученное великим русским учёным А. Г. Столетовым, было названо фотоэлектрическим эффектом (латинское слово «эффект» означает «влияние», «действие», а «фотос» по-гречески — «свет»).

Фотоэлектрический эффект — действие света на электрические заряды тел — и лежит в основе того замечательного прибора — фотоэлемента, о котором рассказывается в нашей книжке.

В чём причина фотоэлектрического эффекта? Почему и каким образом в электрической цепи возникает ток, когда на металлическую пластинку падает луч света?

Чтобы хорошо всё это понять, вспомним, что происходит, когда тела наэлектризовываются.

 

2. Что происходит при электризации тел?

 

Вы знаете, конечно, что все окружающие нас тела состоят из мельчайших невидимых частиц — атомов. Число различных видов этих частиц невелико. Но они могут соединяться друг с другом в самых разнообразных комбинациях, образуя устойчивые группы — молекулы. Этим и объясняется то, что из небольшого количества различных видов атомов построен необычайно разнообразный мир окружающих нас тел.

Размеры отдельных атомов необычайно малы — они не превышают нескольких стомиллионных долей сантиметра. Понятно поэтому, что число частиц — атомов или молекул — в каждом куске вещества, с которым нам обычно приходится иметь дело, чрезвычайно велико. Вот, например, сколько молекул содержится в одной капле воды, считая по 20 капель в кубическом сантиметре: 1 600 000 000 000 000 000 000.

Это — тысяча шестьсот миллиардов раз по миллиарду частиц!

Судите сами, насколько мала масса каждой отдельной молекулы, каждого отдельного атома.

Несмотря на такие ничтожно малые размеры атомов и молекул, теперь об этих невидимых частичках известно очень многое. Учёные нашли, чему равна их масса, т. е. сумели определить вес отдельных атомов, подробно изучили многие свойства различных атомов и молекул.

А за последние пятьдесят лет физики установили, что атомы — это сложно устроенные миры.

Вот как построен атом. В центре атома находится электрически положительно заряженное ядро. Размеры этого ядра примерно в 100 000 раз меньше размеров самого атома. Величина заряда и масса атомного ядра различны у различных атомов. Вокруг ядра вращаются отрицательно заряженные электрические частички — электроны. Они образуют так называемую электронную оболочку атома. Электроны представляют собой своего рода «атомы отрицательного электричества»: эти мельчайшие частички вещества несут с собой мельчайший отрицательный электрический заряд. Заряды всех электронов одинаковы.

Число электронов у различных атомов также различно. Например, в атоме водорода имеется только один электрон, в атоме гелия — два, кислорода — восемь и т.

Быстрый переход