То есть если мы возьмем 273 литра газа при температуре 0° и начнем нагревать, то его объем вырастет до 274 литров при Г, до 275 — при 2°, до 276 — при 3°, и так далее. И наоборот, при -1º объем газа сократится до 272, при -2° — до 271, при -3° — до 270, и так далее.
Если предположить, что закон Шарля верен до самого конца, то при -273° объем газа станет равным нулю, а при более низких температурах величина объема газа примет отрицательное значение, чего быть не может в принципе.
Физиков такие расчеты не особенно изумляли, поскольку основывались на предположении, что закон Шарля верен и для сверхнизких температур, хотя имелись некоторые признаки, позволяющие предположить, что это не так. Во времена Шарля и еще столетие спустя получение действительно низких температур было делом невозможным, и проверить действие закона в таких условиях соответственно было нельзя. Однако уже к 1900 году стало ясно, что задолго до -273° все газы конденсируются в жидкости, а на жидкости закон Шарля не распространяется. Так что — никакого парадокса.
Тем не менее температура в -273° действительно оказалась неким критическим значением, и ученые считают ее абсолютным нулем, точкой, ниже которой температура опуститься не может в принципе. Сейчас самым точным значением абсолютного нуля называют -273,16°, но мы позволим себе округлить это значение. Абсолютный ноль — это температура, при которой тело вообще не содержит тепла. Если принять ее за ноль и отсчитывать от нее привычные нам градусы по Цельсию, то получится, что вода замерзает при 273°, закипает при 373° и так далее. Это — абсолютная шкала температуры (рис. 3).
В 1848 году английский физик Уильям Томсон (позже он получит статус пэра, и нам он сейчас более известен как лорд Кельвин) установил эту систему на прочную теоретическую основу. Поэтому абсолютную шкалу чаще называют «шкалой Кельвина», и, скажем, температуру замерзания воды по ней можно обозначить и как 273 °А, и как 273 °К, причем последнее обозначение встречается чаще.
На шкале Фаренгейта абсолютный ноль — это -460 °F (точнее, -459,69 °F), и можно взять эту точку за ноль, а дальше отсчитывать от нее градусы по Фаренгейту. Первым, кто стал пользоваться такой шкалой, был шотландский инженер Уильям Джон Макуорн Ранкин, и шкала эта теперь называется «шкалой Ранкина». Точка замерзания воды на этой шкале будет равна 492 °Rank, а точка кипения воды — 672 °Rank.
(Название шкалы не сокращается до «R», как можно было бы ожидать, потому что существует еще шкала температуры по Реомюру, которую разработал французский физик Рене Антуан Фершо де Реомюр в XVIII веке, и буквой «R» обозначается именно она. На шкале Реомюра точка замерзания воды — 0 °К, а точка кипения воды — 80 °R. Шкала Реомюра никогда не пользовалась особой популярностью и сейчас представляет сугубо исторический интерес.)
Когда температура и содержание тепла стали легкоизмеримыми явлениями, ученые радостно приняли их под свое крыло и стали по-новому смотреть на энергию. С наступлением XIX века энергию перестали рассматривать как нечто неотрывное от движения. Усиленное внимание к механической энергии привело к замечательным достижениям в XVII и XVIII столетиях, но теперь требовалось нечто большее.
Паровая машина ясно продемонстрировала, что тепло может совершать работу так же, как и падающее тело, и что теплоту соответственно можно считать одной из форм энергии. Магнетизм тоже был признан одной из форм энергии (собственно, в некоторой степени это было ясно уже в Средние века), а проводимые в XVIII веке эксперименты с электричеством показали, что оно тоже является формой энергии.
Само слово «энергия» ввел в науку в 1807 году английский физик Томас Юнг. Наиболее важные из его исследований касались света — еще одной из форм энергии. |