Направление естественных изменений в человеческом организме, сопровождающихся, как уже было сказано, возрастанием энтропии, ведет к смерти. Мы, конечно, живем, не умирая, иногда по целой сотне лет, но это происходит только потому, что наш организм является не замкнутой системой, а частью большей системы, в которую входят и воздух, которым мы дышим, и пища, которую мы едим. Сложность общего взаимодействия всех форм жизни и всей неодушевленной окружающей среды на планете, на которой мы живем, не позволяет считать замкнутой системой что-либо меньшее, чем всю Землю в целом.
Но и этого мало. Если бы Земля была замкнутой системой, то жизнь на ней очень быстро закончилась бы, поскольку поверхность планеты остыла бы, океаны — замерзли и так далее. Это тоже естественные изменения, соответствующие возрастанию энтропии. Этого не происходит только благодаря тому, что Земля является частью более крупной системы, в которую входит еще и Солнце, тепло которого и не дает Земле замерзнуть.
Даже Солнечная система не является полностью замкнутой. На нее действует сила притяжения со стороны других тел Галактики и много других не так ярко выраженных сил. Каждая часть Вселенной тем или иным образом влияет на остальные, и логично предположить, что на свете существует только одна действительно замкнутая система — это сама Вселенная. Если же рассматривать любую ее часть, то появляется вероятность того, что в этой отдельно взятой части энтропия может уменьшаться — за счет еще большего ее увеличения во всей остальной Вселенной.
Ясно, что если общее количество тепла во Вселенной ограниченно, а энтропия продолжает возрастать, то в конце концов она достигнет максимума, то есть такого состояния, что никакой разности температур не будет вообще. Вся энергия во Вселенной станет недоступной для совершения работы — все спонтанные процессы прекратятся и какие-либо изменения перестанут происходить вообще. Эта картина получила название «тепловая смерть Вселенной», и теория о тепловой смерти приобрела большую популярность во второй половине XIX века.
Теперь давайте вернемся к началу нашего повествования и посмотрим, можно ли выразить в терминах термодинамики то различие между живой и неживой материей, которое я высказал в первой главе. Я сказал, что живые существа могут совершать усилия, а неживые — нет.
Понятно, что «совершение усилия» подразумевает локальное уменьшение энтропии. Для того чтобы опустить висящий в воздухе камень вниз, усилия не требуется — его достаточно отпустить, и он упадет. А вот для того, чтобы поднять его вверх, усилие необходимо.
Сам по себе камень может двигаться только вниз, в том направлении, где усилия не нужно. Он не может совершить усилие, чтобы подняться наверх. С точки зрения термодинамики это будет звучать так: камень сам по себе может быть подвержен только увеличению энтропии, но не ее уменьшению.
Живой же организм способен совершать усилия по уменьшению энтропии по крайней мере на одном участке системы, частью которой он является (разумеется, за счет еще большего ее увеличения в других частях системы). Даже простейшие живые существа способны создавать локальное уменьшение энтропии, когда они прыгают, летят, лезут, идут, ползут или плывут вверх, против силы притяжения. Даже не сдвигающиеся с места организмы, например устрицы, тоже могут производить локальное уменьшение энтропии различными другими способами.
Удовлетворимся ли мы заявлением, что различие между живыми и неживыми организмами заключается в том, что живые организмы могут производить локальное уменьшение энтропии, а неживые — нет?
Что ж, выдвинув это утверждение, мы явно встали на верный путь, но, к сожалению, такого определения пока недостаточно. Солнечное тепло тоже может вызывать локальное уменьшение энтропии, когда выпаривает воду из океана, то есть поднимает в воздух огромные массы водяного пара. Силы, задействованные в геологических процессах, происходящих в земной коре, способны воздвигать горы в несколько миль высотой, что тоже подразумевает масштабное уменьшение энтропии. |