Изменить размер шрифта - +

 

Довольно сложное математическое выражение, получившее название «статистический закон распределения Максвелла—Больцмана» (рис. 5) в честь разработавших его ученых, позволило подсчитать процентное соотношение молекул любого заданного объема газа, относящихся к группам с различным значением скорости (при условии, что известны температура газа и масса составляющих его молекул). Если изобразить эту формулу в виде графика отношения скорости к процентному соотношению обладающих данной скоростью молекул, то получим плавную кривую, достигающую пика на значении равном «наиболее вероятной» скорости, а затем — так же плавно снижающуюся.

Теперь можно провести прямую связь между температурой и движением молекул газа. В любом газе, при любой температуре скорость отдельных молекул может принимать значения от нуля до крайне высокой. Однако наиболее вероятная скорость оказалась находящейся в прямой пропорции к квадратному корню от абсолютного значения температуры. По мере повышения температуры наиболее вероятная скорость молекул газа увеличивается. Если абсолютная температура возрастает в четыре раза, то наиболее вероятная скорость молекул — в два.

Так что для любого отдельного газа температура является величиной, тесно привязанной к наиболее вероятной скорости молекул. Однако для того, чтобы корректно обобщить это правило для любых газов, надо принять в расчет массу молекул этого газа. При любой заданной температуре, согласно формуле Максвелла—Больцмана, наиболее вероятная скорость обратно пропорциональна квадратному корню этой массы. Чем массивнее молекулы, тем медленнее они движутся. Молекула кислорода в шестнадцать раз массивнее молекулы водорода, поэтому молекула водорода движется в четыре раза (четыре — квадратный корень из шестнадцати) быстрее, чем молекула кислорода при любой заданной температуре.

Но кинетическая энергия, как уже объяснялось в главе 3, равняется произведению половины массы на квадрат скорости, и вкупе со всеми только что приведенными данными мы получаем, что при любой заданной температуре средняя кинетическая энергия молекул всех газов одинакова. Молекулы одного газа могут быть массивнее молекул другого, но тогда они обладают меньшей скоростью; если же их масса меньше, то и скорость их соответственно выше. Так или иначе, произведение массы на квадрат скорости будет во всех случаях одинаково. А поскольку скорость увеличивается пропорционально квадратному корню температуры, то и кинетическая энергия, пропорциональная квадрату скорости, является прямо пропорциональной температуре (см. рис. 5).

То есть можно сказать, что словом «температура» мы называем среднюю кинетическую энергию молекул, из которых состоит газ.

Оказалось, что это отношение справедливо для всех веществ, не только для газов. Точнее, для жидкостей и твердых тел сильно отличаются только условия. Молекулы, составляющие газ, находятся далеко друг от друга и движутся независимо. В жидкостях молекулы находятся в постоянном контакте и могут лишь скользить друг по другу, а в твердых телах — вообще жестко закреплены в общей структуре и даже скользить не могут. Тем не менее молекулы жидкостей начинают скользить друг по другу, а молекулы твердых тел — вибрировать на своих жестко установленных местах с большей энергией по мере возрастания температуры.

Аналогичным образом по мере понижения температуры все вещества теряют энергию, и при абсолютном нуле энергетическое содержание всех веществ сводится к минимуму. Собственно, до последнего времени принято было считать, что этот минимум равен нулю, но современная теория говорит о том, что даже при абсолютном нуле в веществе остается некий неизвлекаемый минимум энергии. Это объясняет, в частности, странные свойства гелия при температурах близких к абсолютному нулю.

Теперь давайте представим, что некий объем горячего газа вошел в соприкосновение с другим объемом холодного газа.

Быстрый переход