Все то, что в них можно проверить, уже известно, а новое проверке не подлежит. Первоначальный энтузиазм пошел на спад.
Роковой удар по теории Калуцы-Клайна — не в отношении ее верности, а в отношении того, стоит ли тратить на нее драгоценное время исследований — был нанесен ошеломляющим ростом гораздо более привлекательной теории, в которой можно было делать новые предсказания и экспериментально их проверять. Это была квантовая теория, переживавшая тогда пору своей цветущей молодости.
К 60-м годам двадцатого века, однако, квантовая механика начала сбавлять обороты. Первоначальный прогресс уступил место глубоким парадоксам и необъяснимым наблюдениям. Успех квантовой теории не подлежал сомнению, и на этой основе вскоре возникла «стандартная модель» фундаментальных частиц. Но становилось все труднее найти новые вопросы, на которые был бы хоть какой-нибудь шанс получить ответ. По-настоящему новые идеи трудно было проверить; те идеи, которые допускали проверку, были лишь развитием уже существующих.
Из всех этих исследований возник один весьма изящный основополагающий принцип: ключевую роль в отношении структуры материи на очень малых масштабах играет симметрия. Но важные симметрии фундаментальных частиц — это ни обычные движения эвклидова пространства без деформаций, ни даже лоренцевы преобразования релятивистского пространства-времени. Они включают в себя калибровочные симметрии и суперсимметрии. Кроме того, имеются и другие виды симметрии (вполне в духе тех, что изучал Галуа), действующие перестановками на дискретном множестве объектов.
Каким образом могут существовать различные типы симметрий?
Симметрии всегда образуют группу, но имеется много различных способов, которыми группа может действовать. Она может действовать параллельными переносами или вращениями, перестановками компонент или же обращением направления времени. Физика частиц привела к открытию нового способа, каким могут действовать симметрии, названные калибровочными. Выбранное название — историческая случайность (лучше было бы называть их локальными симметриями).
Представьте себе, что вы отправились в другую страну — назовем ее Дупликатия, — и там вам понадобились деньги. Валютой в Дупликатии является пфуннинг, а обменный курс — два пфуннинга за доллар. Сначала это вас слегка смущает, но потом вы обращаете внимание, что имеется очень простое и очевидное правило для перевода всех транзакций из долларов в пфуннинги: в пфуннингах все стоит ровно в два раза больше, чем вы бы заплатили в долларах.
Тут действует некий вид симметрии. «Законы» денежных транзакций остаются неизменными, если удвоить все числа. При этом, чтобы компенсировать численное удвоение, вам приходиться платить в пфуннингах, а не в долларах. Эта «инвариантность относительно монетарного масштаба» представляет собой глобальную симметрию правил, действующих для денежных транзакций. Если везде произвести одно и то же изменение, то правила останутся инвариантными.
Так, а, допустим, прямо через границу, в соседней Трипликатии, местной валютой является будл, причем их дают три за доллар. Когда вы отправитесь в Трипликатию, соответствующая симметрия потребует умножения всех сумм на три. Но законы коммерции по-прежнему остаются инвариантными.
Таким образом, перед нами «симметрия», которая изменяется в зависимости от места. В Дупликатии надо умножать на два, в Трипликатии — на три. Скорее всего, вы не удивитесь, когда, приехав в Квинтапликатию, узнаете, что там доллар надо умножать на пять. Все эти операции симметрии можно применять одновременно, но каждая пригодна только в соответствующей стране. Законы коммерции остаются инвариантными, надо только интерпретировать числа в соответствии с местной валютой.
Это локальное масштабное преобразование денежных операций является калибровочной симметрией законов коммерции. |