Изменить размер шрифта - +

Согласно квантовой хромодинамике, протон составлен из трех кварков — двух up и одного down. Если взять кварки из протона, перетасовать их, а потом положить обратно, то все равно получится протон. Таким образом, законы для протонов должны быть симметричны относительно перестановок составляющих их кварков. Более интересно то, что эти законы также оказываются симметричными относительно изменения типа кварка. Можно было бы, скажем, превратить up-кварк в down-кварк, и законы работали бы по-прежнему.

Отсюда следует, что настоящая группа симметрии является здесь не просто группой из шести перестановок трех кварков, а тесно связанной с ней непрерывной группой SU(3) — одной из простых групп в списке Киллинга. Преобразования из SU(3) оставляют уравнения для законов природы неизменными, но они могут изменить решения этих уравнений. Используя SU(3), можно, например, «повернуть» протон в нейтрон. Все, что нужно сделать, — это перевернуть все составляющие его кварки вверх ногами, так, чтобы два up и один down стали двумя down и одним up. Мир фермионов имеет SU(3) симметрию, которая действует, меняя один фермион на другой.

Еще две группы симметрии дают вклад в Стандартную Модель. Калибровочные симметрии слабых взаимодействий, образующие группу SU(2), могут заменить электрон на нейтрино. Группа SU(2) — еще одна из списка Киллинга. И доброе старое электромагнитное поле имеет симметрию U(1) — не лоренцеву симметрию уравнений Максвелла, а калибровочную (т.е. локальную) симметрию изменений фазы. Эта группа отсутствует в списке Киллинга потому, что это не SU(1), но морально она там присутствует, поскольку является очень близким родственником.

Электрослабая теория соединила электромагнетизм и слабое взаимодействие путем объединения их калибровочных групп. Стандартная Модель также включает в себя сильные взаимодействия, являясь единой теорией для всех фундаментальных частиц. Делает она это весьма прямолинейно: она просто соединяет все три калибровочные группы вместе, в группу SU(3)×SU(2)×U(1). Эта конструкция проста и непосредственна, но не особо изящна, и именно из-за нее Стандартная Модель напоминает сооружение, построенное из жевательной резинки и куска бечевки.

Предположим, у вас есть мяч для гольфа, пуговица и зубочистка. Мяч для гольфа имеет сферическую симметрию SO(3), пуговица имеет симметрию окружности SO(2), а зубочистка обладает, скажем, просто отражательной симметрией O(1). Можно ли найти некоторый объединенный объект, обладающий всеми этими тремя типами симметрий? Да, можно — просто положите все три в бумажный пакет. Теперь вы можете применять SO(3) к содержимому пакета за счет вращения мяча для гольфа, SO(2) за счет вращения пуговицы, a O(1) — за счет переворачивания зубочистки. Группа симметрии содержимого пакета есть SO(3)×SO(2)×O(1). Стандартная Модель соединяет симметрии таким же образом, только вместо вращений она использует «унитарные преобразования» из квантовой механики. И страдает от того же недостатка: она просто сваливает различные системы в кучу и комбинирует их симметрии очевидным и довольно тривиальным способом.

Гораздо более интересный способ комбинирования трех групп симметрий может состоять в построении чего-то, что содержит те же объекты, но более изящным способом, чем просто в бумажном пакете. Может быть, у вас получится уравновесить зубочистку на мяче для гольфа, а на конце ее прикрепить пуговицу. Или у вас может быть целая система зубочисток, подобная спицам колеса; установите пуговицу на втулку и крутите колесо на мяче для гольфа. Если вы хорошенько исхитритесь, быть может, построенный объект будет обладать огромной симметрией, скажем, группой K(9). (Такой группы нет. Я придумал ее для этого обсуждения.) Группы симметрии SO(3), SO(2) и O(1) по отдельности могли бы при везении оказаться подгруппами в K(9). Это был бы куда более впечатляющий способ объединить мяч для гольфа, пуговицу и зубочистку.

Быстрый переход