Мы думаем, что сфера его применимости, хорошо это или плохо, будет непрерывно возрастать, принося нам не только радость, но и новые головоломные проблемы.
Поль Дирак полагал, что законы природы должны быть не только математическими, но еще и красивыми. Красота и истина были для него двумя сторонами одной монеты, и математическая красота в сильной степени подсказывала физическую истину. Он даже зашел столь далеко, что говорил, будто предпочтет прекрасную теорию правильной и что красота представляет большую ценность, нежели простота: «Исследователь в своих усилиях выразить фундаментальные законы природы в математическом виде должен главным образом стремиться к математической красоте. Он также должен принимать во внимание и простоту, но в подчинении у красоты… Там же, где они вступают в конфликт, следует отдавать предпочтение красоте».
Интересно, что дираковская концепция математической красоты значительно отличалась от той, которую разделяют большинство математиков. Она не включала в себя логическую строгость, и многие шаги в его работах содержали логические скачки — больше всего известен пример его «дельта-функции», обладающей внутренне противоречивыми свойствами. Тем не менее он весьма эффективно использовал эту «функцию», и в конце концов математики дали строгую формулировку его идеи, после чего она и в самом деле стала частью прекрасного.
Тем не менее, как было отмечено в книге Хельге Краф «Дирак. Биография ученого», «Все его [Дирака] великие открытия были сделаны до [середины 1930-х годов], а после 1935 года ему, в общем, не удавалось производить физические результаты, имеющие непреходящую ценность. Уместно замечание, что принцип математической красоты управлял его мышлением только в течение более позднего периода».
«Уместно» — возможно, но не верно. Дирак мог явно выразить этот принцип в позднейший период, но он пользовался им и ранее. Все его лучшие работы математически изящны, причем он опирался на изящество как на проверку того, движется ли он в правильном направлении. Отсюда следует не то, что математическая красота тождественна физической истине, а то, что она необходима для достижения физической истины. Одной ее недостаточно. Много прекрасных теорий при столкновении с экспериментом оказались полной бессмыслицей. Как заметил Томас Хаксли, «наука — это вышколенный и организованный здравый смысл, где погибло немало прекрасных теорий, убиенных уродливыми фактами».
Тем не менее имеется много свидетельств, что в основе своей природа прекрасна. Математик Герман Вейль, соединивший в своих исследованиях теорию групп и физику, говорил: «В своих работах я всегда пытался соединить истину с красотой, и когда мне приходилось выбрать между ними, я обычно останавливал выбор на красоте». Основатель квантовой механики Вернер Гайзенберг писал Эйнштейну: «Вы можете возразить, что, говоря о простоте и красоте, я ввожу эстетические критерии истины, и я честно признаюсь, что меня в сильной степени привлекают простота и красота математических схем, которые нам предлагает природа. Вам должно быть это знакомо — почти пугающая простота и целостность связи, которую природа неожиданно перед нами раскрывает».
Эйнштейн же полагал, что неизвестно столь много фундаментальных вещей — природа времени, источники упорядоченного поведения материи, форма вселенной, — что нам следует напоминать самим себе, сколь далеки мы от какого бы то ни было «окончательного» понимания. По мере своей полезности математическое изящество дает нам всего лишь локальные и временные истины. Тем не менее это — наилучший способ двигаться вперед.
На протяжении всей истории математика обогащалась из двух различных источников. Один — это естественный мир, а другой — абстрактный мир логической мысли. Именно комбинация этих двух источников придает математике мощь, позволяющую ей сообщать нам об устройстве вселенной. |