Изменить размер шрифта - +
А если оксид алюминия смешать с хромом, получится рубин.

Три века цивилизации: медный, бронзовый, железный – отражают постепенный переход к твердым сплавам. Медь – слабый металл, но он встречается в природе и легко плавится. Бронза – сплав меди с небольшим количеством олова, иногда мышьяка, – гораздо тверже меди. Итак, у вас есть медь, и вы представляете себе, что вы хотите из нее сделать. Немного усилий, и можно ковать оружие и бритвенные лезвия в десять раз прочнее и тверже медных. Но не все так просто. В естественной среде олово и мышьяк чрезвычайно редки. Торговые пути с таким трудом прокладывали именно затем, чтобы доставить олово из далеких Корнуолла или Афганистана в центры цивилизации на Ближнем Востоке.

Современные бритвенные лезвия тоже сделаны из сплава, но, как я объяснил Брайану, это сплав особый, он был загадкой для наших предков на протяжении многих тысячелетий. Сталь гораздо прочнее бронзы, а два ее компонента – железо и углерод – в изобилии присутствуют в земной коре. Практически любая горная порода содержит железо, а углерод входит в состав любого горючего материала. Но наши предки не понимали, что сталь – это сплав, что уголь не просто сгорает в кузнечном горне, но в процессе плавления отдает углерод, который проникает в кристаллы железа. Причем фокус удается только с железом – с медью, оловом или бронзой такого не происходит. Видимо, первобытным людям это казалось невероятной тайной. Лишь теперь, в свете квантовой механики, мы можем объяснить, в чем тут дело: углерод не замещает атомы железа в решетке, но как бы втискивается между ними, деформируя кристалл.

Но есть одна загвоздка. Если взять слишком большое количество углерода – скажем, 4 % вместо 1 %, – железо становится чрезвычайно хрупким и совершенно непригодным для изготовления инструментов и оружия. И это серьезная проблема, поскольку в пламени довольно много углерода. Стоит передержать железо, а тем более дать ему расплавиться, – в кристаллы попадет лишний углерод, и сплав станет очень хрупким. Меч из такой высокоуглеродистой стали сломается в бою.

Лишь в XX веке был до конца изучен процесс плавления металлов. До этого люди не понимали, почему сталь иногда получается качественной, а иногда нет. Работал метод проб и ошибок, и успешные способы передавались по наследству. Мастера хранили тайну как зеницу ока. Но если бы кто-то и украл рецепт стального сплава, он не смог бы воспроизвести все тонкости чужой технологии. В некоторых странах умели производить высококачественную сталь, и такие цивилизации процветали.

В 1961 году профессор Ричмонд из Оксфордского университета обнаружил тайник, вырытый римлянами в 89 году нашей эры. Там находилось 763 840 маленьких двухдюймовых гвоздей, 85 128 гвоздей средней длины, 25 088 длинных гвоздей и 1344 сверхдлинных шестнадцатидюймовых гвоздя. Клад, полный гвоздей вместо золота, огорчил бы кого угодно, только не профессора Ричмонда. «Зачем, – спросил он себя, – римские легионеры спрятали в земле семь тонн железа и стали?».

Римский легион под командованием Агриколы занимал местечко под названием Инктутил (Inchtuthil) в Шотландии. Он защищал дальние рубежи Римской империи от набегов диких, как считали римляне, племен – кельтов. Пять тысяч воинов стояли здесь гарнизоном в течение шести лет, но в конце концов оставили крепость. Приложив немалые усилия, они уничтожили все, что могло достаться врагу. Разбили сосуды с едой и питьем, дотла сожгли укрепления… Но в пепле еще оставались железные гвозди из крепостных стен – слишком ценный подарок для варваров. С помощью железа и стали были построены римские корабли и акведуки, из железа были выкованы римские мечи, а в конечном счете – и сама Римская империя. Оставить гвозди врагу было все равно, что подарить ему оружейный склад, поэтому, прежде чем отправиться на юг, римляне их закопали.

Быстрый переход