Изменить размер шрифта - +
В точках, где фазы одинаковы, яркость максимальна, а где противоположны – минимальна. Вот эту интерференционную картину, а не просто «отпечаток» интенсивности предметной волны и предложил фиксировать Габор. Если через фотопластинку с интерференционной картиной снова пропустить волну, идентичную опорной, то пластинка сработает как дифракционная решётка (можно сказать, фильтр) и на выходе мы получим волну, полностью идентичную предметной, с полной информацией об объекте, которая включает и интенсивность, и фазу. Итоговое изображение называется восстановленным. Таким образом, Габор предполагал разделить процесс на два этапа: сначала получать с помощью электронного микроскопа полное изображение предмета на фотопластинке, а потом с помощью источника опорной световой волны восстанавливать точную копию его настоящего трёхмерного изображения.

Компания, в которой работал физик, поддержала исследования, он получил финансирование и оборудование для опытов. Но возникла проблема, которая так и не позволила реализовать новоизобретённый принцип на практике, – проблема когерентности. Как уже упоминалось, волны называются когерентными, если они имеют одинаковую частоту (физики называют такие волны монохроматическими), а их амплитуды и разность фаз не меняются во времени. Только когерентные волны способны давать отчётливую интерференционную картину. Казалось бы, если взять монохроматическое излучение от одного источника и разделить его на предметную и опорную волны, они всегда будут когерентны. Но на самом деле это не так.

Существует такая физическая характеристика – длина когерентности. Если разность хода двух волн – опорной и предметной – превышает длину когерентности, то они становятся некогерентными и никакой интерференционной картины, которую можно было бы записать для последующего восстановления, не появится.

И предметную, и опорную волны Габор получал с помощью ртутной лампы высокого давления – лучшего источника достаточно интенсивного излучения на конец 1940-х просто не существовало. Её излучение он последовательно пропускал через узкополосный цветной фильтр, что обеспечивало относительную монохроматичность, и через маленькое точечное отверстие. И вот тут вступало в свои права вышеупомянутое ограничение: длина когерентности излучения ртутной лампы составляет доли миллиметра и получить качественную голограмму, способную реально решить проблему, ради которой Габор всё это придумал, было попросту невозможно.

Более того, вся конструкция Габора располагалась на одной оси (голограмма с прямым опорным пучком), и излучение должно было проходить через объект насквозь, иначе разность хода превышала длину когерентности. Это серьёзно ограничивало возможности метода: он позволял записывать только очень маленькие, диаметром чуть более миллиметра, прозрачные объекты. А изображение, восстановленное при просвечивании фотопластинки когерентной опорной волной, наблюдалось только в микроскоп.

Габор и его группа плотно работали над усовершенствованием метода и над разработкой голографического электронного микроскопа вплоть до 1955 года. Они пробовали разные источники света, применяли различные оптические хитрости – но проблема оставалась. Голографические изображения получались некачественными из-за низкой интенсивности и длины когерентности получаемой волны. Это был классический пример учёного, который придумал гениальную идею, но слишком опередил своё время.

Тем не менее Габор опубликовал ряд серьёзных работ по голографии, описал сам принцип, технику – и отложил этот проект в дальний ящик в надежде, что когда-нибудь появятся когерентные источники света и голография обретёт смысл. Ждать, как ни странно, оставалось всего пять лет.

 

Голографическая гонка: США

 

В 1960 году американский физик Теодор Майман представил миру первый работающий рубиновый лазер.

Быстрый переход