Изменить размер шрифта - +
В соответствии с (A.9) параметр замедления теперь равен q ≈ 0,32/2 – 0,68 = –0,52.

Воспользуемся (2.12), чтобы найти закон эволюции Вселенной в рамках ΛCDM-модели. Мы получаем плотность материи из уравнения (2.8), снабдив величины индексом m: ρm = Br–3. Вместо уравнения (2.12а) получим уравнение, учитывающее влияние космологической постоянной

Оно описывает зависимость H(r). Зависимость t(r) имеет вид

Напомним, что уравнение (2.10) было получено из закона сохранения энергии. Применяя эту интерпретацию к уравнению (А.10), мы видим, что космологическая постоянная вносит в энергию свой вклад, пропорциональный r2, т. е. площади поверхности сферы. Та же зависимость от r будет у энергии поверхностного натяжения сферической оболочки, но с отрицательным коэффициентом поверхностного натяжения. В результате мы пришли к довольно неожиданной нерелятивистской аналогии для космологической постоянной. Эта аналогия, скорее всего, чисто математическая и, вероятно, не имеет особого физического смысла.

Из уравнений (2.11) и (A.10) можно получить обобщение уравнения (2.26) для ΛCDM-модели

В релятивистской космологии значение 1 – Ωm – ΩΛ обозначается Ωk и пропорционально пространственной кривизне Вселенной, взятой с обратным знаком. Ее абсолютная величина уменьшается при q < 0. В результате при ускоренном расширении Вселенной она становится все более плоской. Мы уже имели дело с аналогичной ситуацией сразу же после Большого взрыва во время инфляционного расширения Вселенной, которое мы обсуждали в разделе 3.6.

 

А.3. Плоская ΛCDM-модель

 

Астрономические наблюдения дают информацию о том, что наша Вселенная является практически плоской и

Главное свидетельство малой кривизны пространства – это расположение основного максимума в спектре на рис. 3.2, который называется акустическим пиком. При положительной или отрицательной кривизне Вселенной он сдвигается влево или вправо. Плоскостность объясняется теорией инфляции. В эпоху инфляции любые отклонения от плоскостности быстро уменьшались, поэтому в настоящее время выполняется условие (A.13). В результате космологи используют две версии ΛCDM-модели. В первой из них мы используем плоскую модель с

 

Это условие выполняется постоянно. Другими словами, сумма плотностей материи и материи, имитирующей космологическую постоянную, всегда равна критической плотности. Этот случай соответствует А = 0 в уравнениях (A.10), (A.11).

Вторая версия допускает некоторое незначительное отклонение от плоскостности Вселенной, которое возрастало с течением времени во время расширения с замедлением. В этом случае сумма плотностей материи и космологической постоянной почти равна критической. Естественно, это справедливо лишь с конца космологической инфляции. Инфляция обеспечила прекрасную тонкую настройку параметров плотности, удовлетворяющих условию (A.13) даже через миллиарды лет после ее окончания. Ограничение (A.13) выполняется в настоящее время и будет справедливо всегда из-за ускоренного расширения.

В плоской Вселенной параметр А в уравнениях (A.10) и (A.12) равен нулю. В почти плоской Вселенной все члены с этим параметром дают очень малые вклады в правые части соответствующих уравнений и могут быть отброшены, в результате чего мы получаем плоскую ΛCDM-модель. Она прекрасно описывает эволюцию Вселенной после завершения инфляционного периода.

Нам нужны значения только двух космологических параметров, полученных из наблюдений, а именно – текущее значение параметра плотности Ωm (значение ΩΛ мы находим из условия (А.14)) и параметр Хаббла H0. С их помощью из уравнения (А.10) мы получаем закон изменения со временем постоянной Хаббла

Здесь a0 – это текущий масштабный фактор (часто принимаемый равным единице), а a – зависящий от времени масштабный фактор.

Быстрый переход