Это связано с тем, что эта теория предлагала красивое решение нескольких независимых проблем, беспокоящих ученых. Эти конкретные проблемы мы назовем чуть позже, а пока заметим, чем космология на рубеже 1980-х гг. отличалась от космологии времен Хаббла и Гамова. Прежде всего, она стала куда более точной наукой. Повышение точности было связано с существенным прогрессом в астрономии, где использовались все более мощные наземные телескопы, новые методы измерения и обработки данных.
Прошли времена, когда ответы на многие вопросы были в основном качественными. Точность по порядку величины уже перестала удовлетворять ученых. Типичная точность в космологии на начало 1980-х гг. составляла десяток или несколько десятков процентов. В XXI в. точность продолжала улучшаться. В первом десятилетии XXI в. ученые добились того, что погрешности космологических параметров не превышали 10 %. Тогда многие писали о том, что космология наконец-то стала точной наукой. Сейчас ошибки определения многих космологических параметров составляют несколько процентов.
Но повышение точности существенно ужесточило требования к космологическим моделям, которые должны были удовлетворять все большему числу все более жестких ограничений. К концу 1970-х гг. появились проблемы, связанные с тем, что старая стандартная космологическая модель Гамова стала испытывать трудности с объяснением экспериментальных значений. И когда появилась теория инфляции, которая смогла решить несколько разноплановых проблем, она была воспринята как спасительное решение. Перечислим наиболее важные из этих проблем.
Первой назовем проблему плоскостности Вселенной. До появления данных по анизотропии реликтового излучения у астрономов не было надежных механизмов для оценки кривизны Вселенной. В какой-то степени вопрос о кривизне Вселенной – это вопрос об отношении плотности материи к критической плотности (о темной энергии тогда еще не было разговоров), которое обозначается Ωm = ρm/ρкрит. Плоская модель соответствует значению Ωm = 1, причем это значение не меняется со временем. Закрытая модель реализуется при значениях Ωm > 1, а открытая – при значениях Ωm < 1. При этом решения Фридмана, на которых основывалась теория Гамова, обладают следующим свойством: любые отклонения Ωm от 1 увеличиваются со временем. Соответственно, для закрытой модели Ωm становится все больше, а для открытой – все меньше. Оценка масс галактик в нашей Вселенной позволила дать нижнюю оценку величины Ωm. Верхнюю оценку Ωm дают не только астрономические наблюдения, но и то простое соображение, что Вселенная все еще расширяется. При большой начальной плотности Вселенной за время своего существования она либо начала бы сжиматься, либо даже успела коллапсировать.
Полученные ограничения на параметр Ωm оказались достаточно широкими, но из них следовало, что значение Ωm через планковское время после образования Вселенной могло отличаться от 1 не более чем на 10–59, независимо от знака этого отличия. У космологов возник естественный вопрос: почему так получилось? Вряд ли подобное могло произойти случайно. Значит, у природы должен существовать какой-то механизм, подгоняющий плотность материи к критической плотности. Такая тонкая подгонка (по-английски fine tuning) отсутствовала в стандартной космологической модели, хотя должна была бы быть ее важной деталью.
Вторая проблема, требовавшая решения, была связана с высокой степенью изотропности реликтового излучения. К тому моменту еще не были получены данные об анизотропии реликтового излучения, но было понятно, что после исключения дипольной компоненты относительная анизотропия ΔT/T < 0,001, где ΔT – флуктуации температуры реликтового излучения, а T = 2,725 К – ее среднее значение.
Реликт был излучен, когда Вселенной было около 380 000 лет. |