Изменить размер шрифта - +

Кандидат преподавал линейную алгебру в разных университетах уже несколько лет, защитил диссертацию и опубликовал с десяток статей в лучших математических журналах Франции.

Отбор включает собеседование, где кандидату предлагаются всегда элементарные, но важные вопросы (уровня вопроса «Назовите столицу Швеции», если бы предметом была география).

Итак, я спросил: «Какова сигнатура квадратичной формы ху?»

Кандидат потребовал положенные ему на раздумье 15 минут, после чего сказал: «В моём компьютере в Тулузе у меня есть рутина (программа), которая за час-другой могла бы узнать, сколько будет плюсов и сколько минусов в нормальной форме. Разность этих двух чисел и будет сигнатурой – но ведь вы даёте только 15 минут, да без компьютера, так что ответить я не могу, эта форма ху уж слишком сложна».

Для неспециалистов поясню: если бы речь шла о зоологии, то этот ответ был бы аналогичен такому: «Линней перечислил всех животных, но является ли береза млекопитающей или нет, без книги ответить не могу».

Следующий кандидат оказался специалистом по «системам эллиптических уравнений в частных производных» (полтора десятка лет после защиты диссертации и более двадцати опубликованных работ).

Этого я спросил: «Чему равен лапласиан от функции 7/r в трёхмерном евклидовом пространстве?»

Ответ (через обычные 15 минут) был для меня поразительным: «Если бы r стояло в числителе, а не в знаменателе, и производная требовалась бы первая, а не вторая, то я бы за полчаса сумел посчитать её, а так – вопрос слишком труден».

Поясню, что вопрос был из теории эллиптических уравнений типа вопроса «Кто автор „Гамлета“?» на экзамене по английской литературе. Пытаясь помочь, я задал ряд наводящих вопросов (аналогичных вопросам об Отелло и об Офелии): «Знаете ли Вы, в чем состоит закон Всемирного тяготения? Закон Кулона? Как они связаны с лапласианом? Какое у уравнения Лапласа фундаментальное решение?».

Но ничего не помогало: ни Макбет, ни Король Лир не были известны кандидату, если бы шла речь о литературе.

Наконец председатель экзаменационной комиссии объяснил мне, в чём дело: «Ведь кандидат занимался не одним эллиптическим уравнением, а их системами, а ты спрашиваешь его об уравнении Лапласа, которое всего одно – ясно, что он никогда с ним не сталкивался!».

В литературной аналогии это «оправдание» соответствовало бы фразе: «Кандидат изучал английских поэтов, откуда же ему знать Шекспира, ведь он – драматург!».

Третий кандидат (а опрашивались десятки!) занимался «голоморфными дифференциальными формами», и его я спросил: «Какова риманова поверхность тангенса?» (спрашивать об арктангенсе я побоялся).

Ответ: «Римановой метрикой называется квадратичная форма от дифференциалов координат, но какая форма связана с функцией „тангенс“, мне совершенно не ясно».

Поясню опять образцом аналогичного ответа, заменив на этот раз математику историей (к которой более склонны митрофаны). Здесь вопрос был бы: «Кто такой Юлий Цезарь?», а ответ: «Цезарями называли властителей Византии, но Юлия я среди них не знаю».

Наконец, появился вероятностник – кандидат, интересно рассказывавший о своей диссертации. Он доказал в ней, что утверждение «справедливы вместе А и В» неверно (сами утверждения А и В формулируются длинно, так что здесь я их не воспроизвожу).

Вопрос: «А все же, как обстоит дело с утверждением А самим по себе, без В: верно оно или нет?».

Ответ: «Ведь я же сказал, что утверждение А и В неверно. Это означает, что А тоже неверно». То есть: «Раз неверно, что „Петя с Мишей заболели холерой“, то Петя холерой не заболел».

Быстрый переход