Изменить размер шрифта - +
В 1908 г. шведский химик Сванте Август Аррениус (1859–1927) выдвинул гипотезу происхождения жизни без участия сверхъестественных сил. Он высказал мысль, что жизнь на Земле началась тогда, когда на нашу планету из космоса попали зародыши жизни. «Частицы жизни», носящиеся в бескрайних космических пространствах, переносимые давлением света от звезд, оседали то здесь, то там, осеменяя ту или иную планету. Гипотеза Аррениуса лишь отодвигала решение проблемы. Если жизнь была занесена на нашу планету извне, как она возникла там, откуда к нам попала?

А может быть, жизнь все-таки возникла из неживой материи? Колбы Пастера сохранялись стерильными в течение какого-то ограниченного времени; а если их оставить на миллиарды лет? Или вместо колб представить целый океан раствора в условиях, далеких от современных?

Нет причин думать, что основные химические вещества, складывающие живое, существенно менялись на протяжении веков. Весьма вероятно, что они не изменились. Действительно, аминокислоты, выделенные в небольших количествах из некоторых ископаемых организмов, насчитывающих десятки миллионов лет, оказались идентичными аминокислотам, встречающимся в живых тканях современных организмов. И все же химизм мира в целом мог измениться.

Новые данные по химии Вселенной позволили американскому химику Гарольду Клейтону Ури (род. в 1893 г.) предположить, что первичная атмосфера Земли состояла из водорода и водородсодержащих газов, таких, как метан и аммиак; в ней совершенно отсутствовал свободный кислород, а значит, в ее верхних слоях не было озона (одной из форм кислорода). Сейчас такой слой озона существует и поглощает значительную часть ультрафиолетовых лучей солнечного света. В бедной первичной атмосфере несущая энергию радиация, возможно, проникала до океана, где и вызывала такие реакции, которых в настоящее время уже не может быть. Постепенно могли создаваться комплексы молекул; при отсутствии жизни они не потреблялись, а скапливались. В итоге реплицирующиеся молекулы создавали комплекс нуклеиновых кислот, и это было основой жизни.

Благодаря мутациям и действию естественного отбора образовывались все более активные формы нуклеиновых кислот. Эти кислоты могли превратиться в клетки; последние, возможно, начали синтезировать хлорофилл. Фотосинтез (с помощью других процессов, в которые не вовлекались, вероятно, живые организмы) мог обогатить первичную атмосферу Земли свободным кислородом. А в такой атмосфере и в мире, где кишит жизнь, самопроизвольное зарождение описанного выше типа, вероятно, было бы уже невозможно.

Эта гипотеза, хотя и тщательно продуманная, в значительной степени остается гипотезой. Однако в 1953 г. один из учеников Ури, Стенли Ллойд Миллер (род. в 1930 г.), поставил очень интересный опыт. Он взял тщательно очищенную и стерилизованную воду и добавил к ней «атмосферу» из водорода, аммиака и метана. Миллер заставлял эту смесь циркулировать в герметически изолированном приборе, через который пропускал электрические разряды, имитирующие ультрафиолетовое солнечное излучение. Опыт шел в течение недели, после чего Миллер разделил содержимое прибора методом хроматографии на бумаге. В растворе обнаружились простые органические соединения и даже несколько простейших аминокислот.

В 1962 г. схожие опыты были повторены в Калифорнийском университете. К атмосфере добавляли этан (соединение, очень сходное с метаном, но содержащее два атома углерода). В результате было получено еще большее разнообразие органических соединений. И наконец, в 1963 г. подобным же образом синтезировали аденозинтрифосфат, один из основных высокоэнергетических фосфатов.

Если это воспроизводимо в течение недели в небольшом приборе, чего же можно ожидать за миллиарды лет в огромном океане и одевающей его атмосфере?

Очень трудно представить процесс эволюции на ранних этапах существования Земли, но когда мы попадем на Луну, мы, возможно, познакомимся с химическими процессами дожизненных формаций.

Быстрый переход