Изменить размер шрифта - +
Оказалось, что продолжительность ее жизни не так-то легко определить. Под микроскопом все красные клетки выглядят одинаково: среди них нет молодых и дряхлых. И все-таки они не вечны. В крови часто находят маленькие фрагменты погибших клеток (гемокония или кровяная пыль). Они переносятся в селезенку и там уничтожаются крупными клетками макрофагами. Что известно о жизни красных клеток?

Существуют две версии. Либо жизнь красной клетки зависит от случая, так что некоторые из них живут всего несколько минут, другие — недели, а третьи — годы, в зависимости от того, как часто красная клетка контактировала со стенками кровеносных сосудов и была травмирована, либо у нее есть определенная продолжительность жизни, независимо от условий существования.

Ответ был найден при помощи изотопов, и это только один пример того, как тысячи научных проблем были разрешены за последнее время посредством этой новейшей технологии.

Большинство атомов существуют в нескольких разновидностях, которые называются изотопами. Например, атомы азота существуют в двух разновидностях — азот<sup>14</sup> и азот<sup>15</sup>. Из них чаще встречается азот<sup>14</sup>. Из всех атомов азота он составляет 99,64 %, а азота<sup>15</sup> всего 0,36 %. Молекула гемоглобина состоит из 750 атомов азота, из которых всего два атома (в среднем) представлены азотом<sup>15</sup>, а остальные — азотом<sup>14</sup>.

Ученые сумели выделять изотопы и создать азотсодержащие вещества с необыкновенно высоким содержанием азота<sup>15</sup>. Одним из таких веществ является глицин, который при добавлении в пищу усваивается организмом и включается во все белки, в том числе и в гемоглобин. Он может как включиться целиком в глобин, так и в виде фрагментов, содержащих атомы азота, в гемовую часть молекулы гемоглобина.

Ученый-экспериментатор может выяснить, включился ли глицин в гемоглобин. Для этого требуется выделить некоторое количество гемоглобина от крови (легко проделать), отделить атомы азота от молекул гемоглобина (тоже просто) и определить в них процентное содержание азота<sup>15</sup>. Последняя процедура уже не столь проста, она требует наличия сложного инструмента — масс-спектрометра, который измеряет массу отдельных атомов и может отличить более тяжелый атом азота<sup>15</sup> от более легкого азота<sup>14</sup>. Если окажется, что молекула гемоглобина необыкновенно богата азотом<sup>15</sup>, самым простым объяснением этого явления будет то, что содержавшийся в пище глицин по крайней мере включился в гемоглобин.

Из-за того что это необычный изотоп, мы можем проследить за его переходом из одного вещества в другое, мы в состоянии определить его местонахождение и степень включения в те или иные вещества во время их химических превращений в живых тканях. Такие изотопы можно сравнить с ярким ярлычком, который позволяет нам легко отличить свою сумку или чемодан среди чужих вещей в багажном отделении, когда мы путешествуем по железной дороге. По этой причине вещества, содержащие различные изотопы, называются мечеными.

Теперь давайте выясним, как меченый глицин помогает определить срок жизни красной клетки. Допустим, в течение двух дней человек получает его с обычной пищей. У испытуемого через определенные промежутки берут анализ крови и проверяют гемоглобин на содержание азота<sup>15</sup>. Экскременты также анализируют на содержание этого изотопа. В течение недель в гемоглобине повышается содержание азота<sup>15</sup>, так как глицин медленно включается в молекулы гемоглобина. Причина такой медлительности кроется в том, что значительная часть глицина сначала попадает в другие белки и только после этого в гемоглобин.

После первых двух недель содержание азота<sup>15</sup> в гемоглобине достигает своей высшей точки, после чего в течение трех месяцев или более остается неизменным.

Быстрый переход