У позвоночных животных (и у человека) работой клеточных хронометров заведует, приводя их, что называется, к одному знаменателю — единому времени, центральная нервная система, то есть, попросту говоря, мозг. Но мозг такую регуляцию осуществляет через особые железы, выделяющие в кровь гормоны — вещества-регуляторы. Известно уже более сорока физиологических и психических процессов, суточным ритмом которых управляют гормоны. Адреналин и меланофорный гормон гипофиза, маленькой железки под полушариями мозга, играют, по-видимому, главную роль — роль пружины в наших ходиках. Действие этой пружины представляют себе пока так: день и ночь, свет и темнота, чередуясь со строгой последовательностью, заводят пружину физиологических часов. Свет через глаза<sup></sup> побуждает к деятельности симпатическую нервную систему, а она заставляет выделяться в кровь адреналин. Темнота возбуждает парасимпатические нервы и гипофиз, который в больших дозах, чем днем, производит меланофорный гормон.
Ритмические, совпадающие во времени с движением солнца по небу колебания концентрации веществ-регуляторов — то адреналина больше, то меланофорного гормона — задают тон всем другим процессам в организме, подчиняя их одному двадцатичетырёхчасовому циклу. На механических часах каждый отрезок суток обозначен цифрой. В физиологических часах такой цифрой служит определенная доза веществ-регуляторов.
А сама эта доза — мы уже знаем — зависит от чередования света и темноты. Свет — тот внешний источник энергии, который заводит внутренние часы обитателей подсолнечной планеты. Это не лишне повторить, — так важна роль света в процессах, о которых идет речь.
Если нормальное суточное чередование света и темноты изменить, то эндогенные часы животных (и растений тоже) начнут отмечать время по-новому.
Подобные опыты делали сотни раз. Например, крыс, тараканов, мух, голубей или… фасоль освещали, скажем, десять часов подряд, а потом на десять часов помещали в полную темноту — их физиологические часы уже через день-два такой обработки, в крайнем случае через неделю-две, полностью перестраиваются и приспосабливаются к двадцатичасовым суткам<sup></sup>.
Часто даже не нужно все десять часов освещать содержащихся во тьме животных, а достаточно каждый раз в одно и то же время включать свет хотя бы на час и даже всего на несколько минут, и физиологические часы подопытных «кроликов» приобретут новый завод.
Делали и так: не нарушая нормального двадцатичетырехчасового ритма, лишь на шесть часов раньше включали освещение, еще когда на дворе была темная ночь или, наоборот, уже наступал рассвет, а животных еще шесть часов держали в темноте. Их физиологические часы уже через несколько дней показывали новое время — спешили или отставали на шесть часов. И сон, и пробуждение, и поиск пищи, и все другие внешние и внутренние проявления жизнедеятельности животного начинались на шесть часов раньше или позже прежнего.
Физиологические часы можно отвести назад и действием низкой температуры.
Возьмите пчел, обученных прилетать в полдень за сахарным сиропом к кормушке, и подержите их несколько часов на холоде при температуре около 0–5 градусов. Когда они обретут свободу, обязательно вспомнят о сиропе. Но вспомнят с запозданием ровно на столько часов, сколько вы их продержали в холоде, и только к вечеру прилетят к кормушкам.
«Опыты показали, — пишет Эрвин Бюнинг в книге, подводящей итог всем таким экспериментам, — что после длительной обработки холодом организм ведет себя так, как будто в течение этой обработки физиологические часы находились в состоянии покоя».
Не шли, значит, «замороженные».
«Замораживание» быстрее достигает цели, чем многодневная перестройка внутренних ритмов ненормальным чередованием света и тьмы, и к нему часто прибегают ученые, когда экспериментируют с растениями или с холоднокровными животными, температура тела которых быстро повышается или понижается, когда вокруг становится теплее или холоднее. |