Изменить размер шрифта - +
Это мир микроорганизмов. Из-за их размеров вода для них оказывается средой с очень малым числом Рейнольдса. Поэтому движение микробов резко отличается от движения человека или рыбы. Ведь если число Рейнольдса мало, тогда инерция не действует, и, если не прикладывать усилия, сразу остановишься. Но это еще не все: повторяющимися движениями нельзя продвинуться далеко вперед. Вот, например, кальмар, который медленно втягивает в себя воду, а затем быстро ее выбрасывает и получает ускорение. В мире с малым числом Рейнольдса этот фокус не пройдет: независимо от того, быстрое движение или медленное, при заборе воды кальмар станет смещаться назад, а при выбросе – на такое же расстояние вперед и в результате останется на одном месте. Двигаться в таких условиях можно, только если возвратных движений нет вовсе.

Такой движитель известен – это штопор. При его повороте возникает две силы. Одна направлена по касательной к штопору, эта сила для движения не нужна, хоть она и велика. Другая, гораздо меньшая, направлена вдоль оси вращения. Она-то и способна обеспечить тягу при малом числе Рейнольдса. Именно так двигаются жгутиковые микроорганизмы. А также сперматозоиды. Собственно, все мы появились на свет исключительно благодаря тому, что эти мельчайшие частички жизни приспособились быстро перемещаться в мире с малым числом Рейнольдса, энергично вращая своим жгутиком и так продвигаясь к заветной цели.

 

За сколько секунд можно справить нужду?

 

Не знаем, как у вас, а у нас классические гидродинамические выражения, типа "уравнение неразрывности струи" или "скорость истечения жидкости", всегда вызывали ассоциации с процессом, которому все люди предаются по нескольку раз на дню. Но эти ассоциации никогда не претворялись в желание заняться исследованием столь жизненно важного процесса – вероятно, поэтому мы никогда и не станем лауреатами Игнобелевской премии.

Не таков доцент Дэвид Ху из Технологического университета Джорджии, о котором мы уже упоминали в одном из предыдущих рассказов. Вот у него за мыслью следует слово, а слово не расходится с делом. Он, вообще-то, занимается гидродинамикой и механикой сплошных сред – науками сложными, насыщенными многоэтажными формулами, которые присущи тензорному исчислению и требуют немалого воображения. Видимо, для развития воображения он и поручает своим студентам решать весьма остроумные задачи. Например, изучить гидродинамику потока муравьев, вытекающих из носика чайника подобно потоку воды, или продемонстрировать, что лягушка при ловле мух использует на языке слизь, обладающую свойствами неньютоновской жидкости.

Несомненно, что замеченная нами ассоциация не прошла мимо внимания и доцента Ху. Но у него она породила вполне резонные вопросы: как зависит время опорожнения мочевого пузыря или кишечника от размера живого существа, освобождающегося от этих продуктов жизнедеятельности, а также от количества предварительно выпитого и съеденного? За вопросами последовали исследования: одно посвящено мочеиспусканию, второе – дефекации. Оба исследования произвели неизгладимое впечатление на Игнобелевский комитет, что принесло доценту Ху с сотрудниками премию по физике за 2015 год. Кратко результат формулируется так: любое животное опорожняет свой мочевой пузырь примерно за 21 секунду, а время выхода твердых экскрементов составляет в среднем 12 секунд.

Как же это было установлено и в чем причина подобного единообразия, если смотреть на явление с точки зрения механики сплошных сред? Исследователи при поддержке грантов для молодых специалистов Национального научного фонда США и президента университета начали свой тернистый путь к славе с простейшего вида работы – наблюдения за соответствующим процессом у разных животных. Для этого они снимали на видеокамеру акты испражнения обитателей зоопарка Атланты, а также пользовались видеороликами из интернета.

Быстрый переход