Изменить размер шрифта - +
В мое время они не входили в курс дифференциального исчисления. Наука пошла по пути Лейбница, и теперь вы имеете полное право считать бесконечно малые элементы чем-то совершенно реальным.

Избавиться от бесконечно малых можно, но при этом придется отбросить представление о существовании самого движения: останутся только тела, занимающие в различные мгновения определенные положения в пространстве. Интуиция заставляет задать вопрос: «Каким образом можно оказаться в ином положении, не перемещаясь в него?» Выяснилось, что такое интуитивное недоумение не так уж обосновано. Достаточно предположить, что то явление, которое называют движением, сводится к неподвижному положению материи (или тела) в разных точках пространства в определенные моменты времени. Это можно назвать кинематографическим подходом к действительности, в рамках которого идея движения превращается просто в иллюзию, майю. Я не отстаиваю эту точку зрения, я просто описываю ее. Сейчас я занимаю некую промежуточную позицию. Нам известно, что последовательность неподвижных картинок способна вызвать иллюзию движения. Мы сталкиваемся с этим всякий раз, когда приходим в кинотеатр. Каждый образ, возникающий на экране, совершенно статичен, просто кадры сменяются очень быстро, и в результате возникает впечатление потока, движения, хотя на самом деле никакого движения нет.

Был один греческий философ по имени Парменид, и он уже в давние времена утверждал, что движения не существует. Его противником был Гераклит [12] – тот самый, который сказал, что в мире царит такое движение, что в одну реку нельзя войти дважды – впрочем, это невозможно сделать даже один раз. Зенон [13], ученик Парменида, развил его лучшие парадоксы с единственной целью: продемонстрировать, что, допуская существование движения, можно оказаться в очень сложном положении. Он описал знаменитый парадокс состязания Ахилла и черепахи в беге, где животное получает определенную фору в расстоянии (см. рис. 7).

Рис.7

Зенон утверждает, что Ахилл никогда не догонит ее, как бы он быстро ни бежал и как бы медленно ни ползла черепаха. Предположим, Ахилл начинает бег с точки А, а черепаха – с точки В. Чтобы догнать ее, Ахиллу необходимо достичь точки В, но тем временем черепаха уже доползет до точки С. Это значит, что теперь Ахиллу придется добежать до точки С, но к этому времени черепаха уже окажется в точке D. Это будет продолжаться бесконечно, а Ахиллу потребуется бессчетное число шагов. Совершить бесконечное количество движений за конечное время невозможно. Таким образом, движения нет.

Это может показаться смешным, но логики и математики сражались с этой задачей более двух тысячелетий и до сих пор не нашли вполне удовлетворительного решения. В нашем мыслительном процессе определенно существуют какие-то серьезные изъяны. Бертран Рассел [14] считал, что решение кроется в том, что за конечное время все-таки можно совершить бесконечное число шагов, так как сумма бессчетного количества элементов не обязательно бесконечна, она может быть и конечной. Не исключено, что решение существует, но если так, то нам все же придется ждать до тех пор, пока кто-нибудь его найдет. Так что не смейтесь над Зеноном. Он изложил свой парадокс в виде шутки, но сама задача оказалась серьезным испытанием для мышления.

Этим вечером я собирался заняться математической стороной вопроса, но сначала я хочу сказать, что попытаюсь объединять систематический план лекций и непредвиденные порывы. Систематичность вполне нормальна для обычного интеллектуального построения. Она свойственна лекции любого профессора. К ней относится то, что ты собираешься сделать, причем знаешь об этом заранее. Для этого достаточно подготовки. По этой причине я отношусь ко всему систематическому только как к мелкой подробности: «Я буду говорить об этом тогда-то и тогда-то, а это понятие введу тогда-то» – и этого достаточно, чтобы прочесть лекцию. В противоположность этому, импровизация представляет собой нечто возникающее откуда-то извне, проникающее сверху, из пространства по другую сторону от черты, и никакие способности нижнего пространства не позволят предсказать: «И тогда я скажу это».

Быстрый переход