Изменить размер шрифта - +
Единственным исключением стала развитая Ньютоном теория производных, то есть дифференциального исчисления. Ньютона занимали концепции мироздания, а математика оставалась для него лишь инструментом. То же самое можно сказать и о значении математики для Винера [28], одного из главных теоретиков в области создания вычислительных машин в наши дни. Он был склонен заниматься не чистой, а прикладной математикой.

Поговорим об этом подробнее. Вот история о Рамануджане [29], величайшем восточном (индийском) математике моего времени, и об английском ученом Харди [30]. Оба были чистыми теоретиками. На одной из своих лекций Харди рассказывал о том, как нанял кэб и отправился навестить Рамануджана, когда тот гостил в Англии. Появившись, Харди сказал: «Я приехал на кэбе номер 1729 – очень скучное число». Его друг-индиец возразил: «Напротив, это очень интересное число. Это минимальное из всех чисел, которые можно двумя различными способами представить в виде суммы двух кубов». Попробуйте самостоятельно найти решения этой задачи [31].

Дело в том, что вольная душа не трудится, а играет. Действия такого человека представляют собой спонтанное проявление радости, но такой подход приводит к величайшим открытиям. Что касается расцвета формализма, который начался после развития неевклидовых геометрий, то этот подъем стал подлинной революцией в представлениях о природе математики. Была низвергнута сама идея аксиом, то есть убежденность в существовании неких несомненных истин, на основе которых выстраиваются логические рассуждения. Вместо аксиом у математиков осталось только то, что можно назвать «основополагающими исходными посылками». Впоследствии это привело к созданию самых разнообразных экзотических геометрий. В качестве примера используем такие основополагающие исходные посылки (те, кому известны аксиомы Евклида, могут их не узнать):

Аксиома 1. Если а и b – различные элементы множества S, то существует по меньшей мере один класс L, одновременно содержащий в себе и а и b.

Аксиома 2. Если a и b – различные элементы множества S, то существует не более одного класса L, одновременно содержащего в себе и а и b.

Аксиома 3. Любые два класса L имеют по меньшей мере один общий элемент из множества S.

Аксиома 4. В множестве S существует по меньшей мере один класс L.

Аксиома 5. Любой класс L содержит по меньшей мере три элемента множества S.

Аксиома 6. Все элементы множества S не могут одновременно принадлежать одному классу L.

Аксиома 7. Ни один класс L не содержит более трех элементов множества S.

Обратимся к практическим приложениям этой геометрии. Предположим, существует некая банковская фирма, у которой есть семь совладельцев. Чтобы обеспечить правильное обращение с информацией, относящейся к вопросам ценных бумаг, совладельцы решили образовать семь комиссий, каждая из которых будет связана с определенной областью. Кроме того, партнеры договорились, что каждый из них должен стать председателем какой-либо комиссии и членом трех – ровно трех – комитетов в целом. Запишем названия комиссий и списки их членов; председателем подразделения является тот совладелец, чье имя указано первым:

Внутренние железные дороги: Адаме, Браун, Смит. Муниципальные долговые обязательства: Браун, Мерфи, Эллис.

Федеральные долговые обязательства: Мерфи, Смит, Джонс. Южноамериканские ценные бумаги: Смит, Эллис, Гордон. Национальная черная металлургия: Эллис, Джонс, Адаме. Континентальные ценные бумаги: Джонс, Гордон, Браун. Акции коммунальных предприятий: Гордон, Адаме, Мерфи.

Бесплотный дух Евклида! Вот чем становится современная геометрия! Этот список полностью соответствует нашим аксиомам. В прошлом слово «геометрия» обозначало землемерные работы, но теперь это понятие потеряло прежний смысл. Сейчас формалисты утверждают, что математика – это игра с формальными сущностями; подобно шахматам, она не несет никакого содержания, и все же люди играют в нее очень серьезно.

Быстрый переход