Изменить размер шрифта - +
Эта энергия так велика, что все частицы стандартной модели – кварки, глюоны, фотоны – должны быть сопоставлены с наинизшими модами колебаний струны, в противном случае, требовалось бы так много энергии на то, чтобы их породить, что мы никогда не смогли бы эти частицы обнаружить.

С этой точки зрения квантовая теория поля типа стандартной модели представляет собой низкоэнергетическое приближение к фундаментальной теории, которая является совсем не теорией полей, а теорией струн. Сейчас мы полагаем, что квантовые теории полей работают столь успешно при энергиях, доступных современным ускорителям, совсем не потому, что окончательное описание природы возможно на языке квантовой теории поля, а потому, что любая теория, удовлетворяющая требованиям квантовой механики и специальной теории относительности, при достаточно малых энергиях выглядит как квантовая теория поля. Мы все больше и больше воспринимаем стандартную модель как эффективную квантовую теорию, причем прилагательное «эффективная» служит для напоминания, что все такие теории суть лишь низкоэнергетические приближения к совершенно другой теории, возможно, теории струн. Стандартная модель – сердцевина современной физики, но такое изменение отношения к квантовой теории поля может означать начало новой эры постмодерна.

Так как теории струн включают в себя гравитоны и еще кучу других частиц, впервые возникает основа для построения возможной окончательной теории. Действительно, поскольку представляется, что наличие гравитона – неизбежное свойство любой теории струн, можно сказать, что такая теория объясняет существование гравитации. Эдвард Виттен, ставший позднее ведущим специалистом по теории струн, узнал об этой стороне теории в 1982 г. из обзорной статьи теоретика Джона Шварца. Он вспоминает, что эта мысль стала «величайшим интеллектуальным потрясением в моей жизни».

Похоже, что теории струн сумели решить и проблему бесконечностей, сводившую на нет все предыдущие попытки построения квантовой теории тяготения. Хотя струны и выглядят как точечные частицы, все же главное в них то, что они не являются точечными. Можно убедиться, что бесконечности в обычных квантовых теориях поля непосредственно связаны с тем, что поля описывают точечные частицы. (Например, закон обратных квадратов для силы взаимодействия точечных электронов приводит к бесконечной величине силы, если поместить оба электрона в одну точку.) С другой стороны, должным образом сформулированная теория струн, похоже, вообще свободна от бесконечностей.

Интерес к теориям струн реально возник в 1984 г., после того, как Джон Шварц вместе с Майклом Грином показали, что две конкретные теории струн прошли проверку на математическую непротиворечивость (что не удавалось доказать в ранее изучавшихся струнных теориях). Наиболее волнующим свойством теорий, рассмотренных Грином и Шварцем, было то, что они обладали определенной жесткостью, той самой, которую мы хотели бы видеть в окончательной теории. Хотя можно было представить себе огромное количество разных теорий открытых струн, оказалось, что только две из них имеют смысл с математической точки зрения. Энтузиазм в отношении теорий струн достиг уровня лихорадки, когда одна группа теоретиков показала, что низкоэнергетический предел двух теорий Грина-Шварца необычайно напоминает нашу сегодняшнюю модель слабых, электромагнитных и сильных взаимодействий, а другая группа (ее прозвали «Принстонский струнный квартет») обнаружила ряд струнных теорий, еще более соответствующих стандартной модели. Многим теоретикам показалось, что удалось ухватить окончательную теорию.

С тех пор энтузиазм несколько поостыл. Сейчас ясно, что существуют тысячи теорий струн, столь же математически состоятельных, как и первые две теории Грина-Шварца. Все эти теории удовлетворяют некоторой фундаментальной симметрии, известной как конформная симметрия. Такая симметрия возникает не из наблюдений природных явлений, как, скажем, эйнштейновский принцип относительности.

Быстрый переход