Изменить размер шрифта - +
) Вплоть до работ Галилея, Кеплера и Декарта в XVII в. мы не находим понятия, соответствующего современному «законы природы».

Специалист по античности Петер Грин полагает, что ограниченность греческой науки в значительной степени была обусловлена присущим грекам стойким интеллектуальным снобизмом, их предпочтением статики динамике, размышлений технологии, за исключением военных приложений. Первые три царя эллинистической Александрии поддерживали исследования полета снарядов в связи с очевидными военными приложениями, но грекам показалось бы совершенно неестественным применить точные рассуждения для решения какой-нибудь банальной задачи вроде скатывания шарика по наклонной плоскости, именно той задачи, которая высветила Галилею законы движения. В современной науке полно такого же снобизма – биологи больше занимаются генами, чем воспалением суставов, а физики скорее предпочтут изучать протон-протонные соударения при энергии 20 триллионов электрон-вольт (эВ), чем просто 20 эВ. Но это снобизм тактического порядка, основанный на мнении (правильном или ошибочном), что некоторые явления дают больше для понимания, а не на убеждении, что какие-то явления более важны, чем другие.

Современные мечты об окончательной теории берут начало от Исаака Ньютона. На самом деле количественное научное мышление никогда не прерывалось и ко времени появления Ньютона оно уже получило новый импульс, особенно в трудах Галилея. Но именно Ньютон сумел так много объяснить с помощью своих законов движения и закона тяготения, начиная с формы орбит планет и их спутников и кончая приливами и законом падения яблок, что он должен был впервые почувствовать возможности действительно последовательной объясняющей теории. Надежды Ньютона были выражены в предисловии к первому изданию его великой книги «Математические начала натуральной философии»: «Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами…». Двадцатью годами позднее, в «Оптике», Ньютон описал, как, по его мнению, могла бы осуществиться такая программа:

«Мельчайшие частички материи слепляются в результате сильнейшего притяжения, образуя частицы большего размера, но уже менее склонные к притяжению; многие из этих частиц могут опять слепляться, образуя еще большие частицы с еще меньшим притяжением друг к другу, и так далее в разных последовательностях, пока эта прогрессия не закончится на самых больших частицах, от которых зависят уже и химические реакции, и цвет естественных тел, и которые образуют, наконец, тела ощутимых размеров. Если так, то в природе должны существовать посредники, помогающие частицам вещества близко слепляться друг с другом за счет сильного притяжения. Обнаружение этих посредников и есть задача экспериментальной философии».

Великий пример Ньютона породил, особенно в Англии, характерный стиль научного объяснения: вещество полагалось состоящим из крошечных неделимых частиц; частицы действуют друг на друга с «различными силами», одной из разновидностей которых является сила тяготения; зная положения и скорости этих частиц в любой момент времени, и зная, как вычислить силы, действующие между ними, можно воспользоваться законами движения, чтобы предсказать, где они окажутся в любой последующий момент. До сих пор новичкам часто преподают физику в таком духе. К сожалению, несмотря на все успехи ньютоновского стиля рассуждений, это был тупиковый путь.

Мир все-таки сложная штука. Чем больше узнавали ученые о химии, свете и электричестве в XVIII и XIX вв., тем более неосуществимой должна была казаться возможность объяснения этих явлений в ньютоновском духе. В частности, для того чтобы объяснить химические реакции и химическое сродство элементов, рассматривая атомы как ньютоновские частицы, движущиеся под действием сил взаимного притяжения и отталкивания, физики вынуждены были делать столько дополнительных предположений об атомах и силах, что реально ничего нельзя было довести до конца.

Быстрый переход