Изменить размер шрифта - +
Утверждение заключается в том, что законы, обнаруженные в разные моменты времени и в разных местах, одинаковы. Если бы таких симметрий не было, все научные данные нужно было бы переделывать в каждой новой лаборатории и в каждый момент времени.

Любой принцип симметрии в то же самое время есть и принцип простоты. Если бы законы природы различали направления вверх, вниз или на север, то в уравнения, описывающие эти законы, пришлось бы ввести какие-то дополнения, позволяющие проследить за ориентацией наших лабораторий. Соответственно, сами уравнения стали бы заведомо более сложными. На самом деле даже та система обозначений, которую используют математики и физики, для того чтобы уравнения выглядели как можно проще и компактнее, основана на предположении, что все направления в пространстве эквивалентны.

Эти симметрии необычайно важны в классической физике, но их значение еще больше возрастает в квантовой механике. Рассмотрим, что отличает один электрон от другого? Только его энергия, импульс и спин; если не считать этих свойств, каждый электрон во Вселенной похож на любой другой. Все эти свойства электрона характеризуют то, каким образом его квантово-механическая волновая функция откликается на преобразования симметрии, а именно на изменения установки часов, местоположения или ориентации нашей лаборатории. Таким образом, вещество теряет свою главенствующую роль в физике: все, что остается, – это принципы симметрии и разные способы преобразования волновых функций под действием преобразований симметрии.

Существуют и менее очевидные преобразования пространства-времени, чем простые трансляции и вращения. Законы природы не меняют своей формы для наблюдателей, движущихся с различными постоянными скоростями: нет разницы, проводим ли мы эксперимент здесь, в Солнечной системе, крутящейся вокруг центра Галактики со скоростью в несколько сотен километров в секунду, или в далекой галактике, удаляющейся от нас со скоростью в десятки тысяч километров в секунду. Этот принцип симметрии часто называют принципом относительности. Широко распространено мнение, что он был сформулирован Эйнштейном, однако уже в ньютоновской механике был свой принцип относительности. Разница между ними только в том, как скорость движения наблюдателя влияет на наблюдение положений и моментов времени в обоих теориях. Но Ньютон просто постулировал свой принцип относительности; что же касается Эйнштейна, то он явно сформулировал его так, чтобы он был совместим с тем экспериментальным фактом, что скорость света не зависит от скорости движения наблюдателя. В этом смысле упор на симметрию как на вопрос, относящийся к физике, в работе Эйнштейна 1905 г. по специальной теории относительности ознаменовал начало современного отношения к роли принципов симметрии.

Самое важное отличие ньютоновской физики от эйнштейновской при ответе на вопрос, как движение наблюдателя влияет на наблюдение пространственно-временных положений, заключается в том, что в специальной теории относительности утверждение, что два удаленных друг от друга события произошли одновременно, не имеет абсолютного смысла. Один наблюдатель может видеть, что двое часов одновременно бьют полдень; другой наблюдатель, движущийся относительно первого, обнаруживает, что одни часы пробили полдень раньше или позже других. Как уже отмечалось выше, из-за этого ньютоновская теория гравитации, как впрочем и любая аналогичная теория тяготения, несовместима с специальной теорией относительности. Ньютоновская теория утверждает, что в любой момент времени сила притяжения, действующая со стороны Солнца на Землю, зависит от того, где в этот момент находится Солнце. Возникает вопрос: в этот же момент относительно чего?

Естественный способ исправить положение заключается в отказе от старой ньютоновской идеи о мгновенном действии на расстоянии и замене этой идеи картиной сил, обусловленных полями. В такой картине Солнце не притягивает Землю непосредственно; оно создает в окружающем пространстве поле, называемое гравитационным, которое затем оказывает силовое действие на Землю.

Быстрый переход