В них присутствуют лишь скорость света и гравитационная постоянная Ньютона.
Другим примером классической теории является электродинамика, созданная более ста лет назад Д. Максвеллом. Всего 80 лет назад большинство физиков свято верило, что в природе существует лишь два вида фундаментальных взаимодействий — гравитация и электромагнетизм. Они имеют неограниченный радиус действия и могут быть не только измерены с помощью приборов, но хорошо известны «в быту»: если, например, кирпич упадет на голову, можно не сомневаться в том, что вы на практике столкнулись с гравитацией. Электромагнитные взаимодействия также хорошо знакомы каждому человеку, поскольку самые разнообразные физические, химические, биологические явления зависят от электромагнетизма.
Однако более 80 лет назад из микромира поступили тревожные сигналы о том, что классическая физика не в состоянии описать явления, происходящие в масштабах отдельных атомов. Хорошо известно, что согласно классической теории электромагнетизма электрон в атоме должен «упасть» в конце концов на атомное ядро из-за непрерывного излучения энергии. С этим и другими парадоксами оказалась в состоянии справиться лишь квантовая теория поля.
Нельзя не вспомнить о том, что великий Эйнштейн не принимал квантовой теории в ее современном виде, хотя именно он (и здесь мы опять сталкиваемся с парадоксами истории науки) наряду с Планком заложил фундамент квантовой физики. Кстати, Нобелевскую премию по физике Эйнштейн получил за создание теории фотоэффекта. А ведь фотоэффект по своей природе является типичным квантовым явлением. Эйнштейн работал над этим в 1905 году. Затем возникла квантовая механика, в частности появилось знаменитое соотношение неопределенностей Гейзенберга, налагающее ограничения на одновременное определение координаты и импульса частицы.
Суть квантовой теории (а именно она вызывала неприятие у Эйнштейна) состоит в том, что, располагая даже максимальной информацией о физической системе, квантомеханический подход определяет лишь вероятность того или иного события в микромире и не предсказывает точного поведения системы.
«Бог в кости не играет», — говорил Эйнштейн, отрицая вероятностный подход квантовой физики к описанию физических явлений. В течение последних лет своей жизни Эйнштейн пытался создать единую теорию поля, общую классическую теорию, классическую в том смысле, что физические явления в ней должны полностью описываться, если известны значения всех рассматриваемых физических переменных. Мы знаем, что на этом пути Эйнштейн потерпел неудачу. Но титаническая игра гения с природой навсегда останется в истории человеческой культуры как один из наиболее ярких и драматических моментов.
Однако вернемся к ОТО. Я уже говорил о том, что эффекты ОТО наиболее выпукло проявляются в сильных гравитационных полях. Так почему же мы заговорили о границах ее применимости? «Узкое место» здесь — сингулярность, начало расширения Вселенной.
Совершенно ясно, что если считать сингулярность точкой, математической абстракцией, то нечего вообще говорить ни о каких физических законах в этой точке. Но дело в том, что Вселенная материальна; грубо говоря, мы знаем, что она имеет вес. Именно поэтому реальное вещество, материя всегда будет занимать какой-то конечный, отличный от нуля объем.
Поскольку поведение Вселенной во времени описывается уравнениями ОТО, то вопрос о границах применимости этих уравнений на ранних стадиях Вселенной в условиях экстремально малых размеров и экстремально больших плотностей вполне правомочен. Пространство — время чудовищно искривлены, и, поскольку мы стремимся к сингулярности, речь идет уже не о маковом зернышке, а о гораздо меньших объемах. Не могут ли здесь играть роль квантовые эффекты?
Когда теоретики начали исследовать этот вопрос, то оказалось, что «ответ» на него был дан в конце прошлого века, то есть когда ОТО еще не была создана. |