Изменить размер шрифта - +

Сейчас, после недавних измерений кривой вращения многих спиральных галактик, оказалось, что наличие в них большой невидимой массы — повсеместное явление в космосе. Массивная корона невидимой материи может распространяться в некоторых случаях на величину до трех радиусов диска. Если включить (а это совершенно необходимо) корону в картину общей морфологии нашей Галактики, то окажется, что наше Солнце и, соответственно, Солнечная система расположены отнюдь не на периферии Галактики, как считалось совсем недавно.

Но это не самый важный вывод из наблюдений. Самое главное в том, что невидимая масса вполне может остановить расширение Вселенной. Мы помним, что значение критической плотности во Вселенной, то есть такой плотности, при которой Вселенная становится замкнутой и ее расширение рано или поздно сменится сжатием, составляет ρ<sub>кр</sub> ≈ 10<sup>–29</sup> г/см<sup>3</sup>. Для достижения ρ<sub>кр</sub> плотность невидимого, ненаблюдаемого вещества должна примерно в 70 раз превышать плотность светящейся материи. Когда астрономы начали подсчитывать значение невидимой массы, оказалось, что оно может в некоторых случаях при переходе к все большим и большим системам, достигать значений, близких к критическим.

Конечно же, следует учитывать то обстоятельство, что здесь степень нашего незнания определяется отсутствием информации о том, какая доля массы спиральных галактик недоступна сейчас для наблюдений. Вопрос о том, что представляет собой эта невидимая масса, также нельзя считать решенным. Ненаблюдаемая материя может быть представлена несостоявшимися звездами — гигантскими планетами типа Юпитера, а может быть, блуждающими планетами еще большей, чем Юпитер, массы. Быть может, это черные дыры. Наиболее «удобный» на сегодня кандидат — нейтрино, обладающие массой покоя, или гипотетические тяжелые частицы — монополи, фотино, гравитино. Многие из этих экзотических частиц могли в принципе дожить со времени начала Большого Взрыва и до наших дней (в том случае, конечно, если они устойчивы). Итак, мы видим, что кропотливое и тщательное изучение галактик дает материал исключительной важности для решения глобальных проблем космологии.

 

 

Галактики задают вопросы

 

При исследовании галактик всегда возникает великое множество самых различных загадок. Возьмем, к примеру, Большое Магелланово Облако. Расположенное далеко на южном небе, недоступное для телескопов северного полушария, оно давно привлекает внимание наблюдателей-астрономов. Магеллановы Облака были впервые описаны во время первого кругосветного путешествия. Это самые близкие к нам галактики, с обильным и широким составом объектов. Интересно, что в некоторых случаях наблюдения удобнее проводить не в нашей Галактике, а в Магеллановых Облаках, поскольку наблюдениям, производящимся в направлении главной плоскости Галактики, мешает расположенная там темная пылевая материя. В то же время направления на Большое и Малое Магеллановы Облака составляют углы 33° и 45° с плоскостью Галактики. Следовательно, поглощение света пылевой материей не мешает наблюдениям.

Огромным «преимуществом» звезд Магеллановых Облаков по сравнению со звездами нашей Галактики является то, что, поскольку размеры Облаков малы по сравнению с расстояниями до них, все звезды Облаков можно считать расположенными на одном и том же расстоянии до нас. Именно это важное обстоятельство дало возможность в 1910 году разработать метод определения расстояний по изменению блеска цефеид.

В Большом Магеллановом Облаке очень много ярких молодых звезд. Там находится около 5 тысяч голубых сверхгигантов, каждый из которых светит ярче, чем 10 тысяч солнц. Но самый интересный объект находится в Большом Магеллановом Облаке, в созвездии Золотой Рыбы. В этом созвездии есть туманность Тарантул, а в ней объект R 136, который уже многие годы будоражит воображение астрономов и астрофизиков.

Быстрый переход