Изменить размер шрифта - +

Каждый, кто стоял на железнодорожной платформе и наблюдал приближающийся и проходящий мимо скорый поезд, знает, что тон гудка меняется при движении поезда. Частота звука увеличивается, когда поезд подходит к платформе, и понижается, когда он удаляется от вас. Это следствие так называемого эффекта Доплера, хорошо известного в физике.

Пример движущегося по направлению к нам, а потом удаляющегося от нас источника звукового сигнала является прекрасной его иллюстрацией. Звук представляет собой бегущие в воздухе волны. Пусть источник звука дает постоянную частоту, длину волны. Длина звуковой волны — это произведение скорости звука на интервал времени между «гребнями волны». Если источник звука неподвижен, то человек всегда будет слышать один и тот же тон.

 

Распространение звуковых волн от неподвижного источника.

Пусть источник двигается по направлению к наблюдателю. Скорость звука не меняется. Но поскольку источник двигается к наблюдателю, то за тот же промежуток времени, что и в случае с неподвижным источником, мимо наблюдателя пройдет большее число гребней, чем в случае, когда источник неподвижен. Другими словами, наблюдателю будет казаться, что он воспринимает меньшие длины волны или более высокие частоты.

 

Эффект Доплера.

Тот же самый случай мы имеем, когда движется источник света. Если он приближается, то наблюдателю будет казаться, что свет синеет. Если источник удаляется, то фотоны краснеют, длина их волны увеличивается.

Астрономы наблюдали спектры далеких туманностей и установили, что хорошо известные линии, например, ионизированного кальция или водорода, находятся «не на своих местах», сдвинуты далеко в красную сторону спектра. Так был обнаружен факт разлета галактик, и вскоре в науке появился знаменитый термин «красное смещение». Закон Хаббла был установлен в 1929 году, и модели расширяющейся Вселенной получили таким образом первое надежное экспериментальное подтверждение.

Нужно сказать о том, что закон Хаббла и красное смещение разрешают и знаменитый парадокс Ольберса.

Здесь мне хочется сделать небольшое отступление и подробнее остановиться на некоторых поистине удивительных ситуациях, с которыми сталкиваешься, рассматривая историю научных открытий.

Уже говорилось, что закон Всемирного тяготения Ньютона легко выводится из ОТО. Но не это самое интересное. В 30-х годах было показано, что из закона Всемирного тяготения можно получить законы расширения и сжатия Вселенной, и ОТО для этого в принципе не нужна!

Это поистине поразительный факт, свидетельствующий лишний раз о том, насколько притягательна идея вечной и стационарной Вселенной. Нам трудно себе представить, что модели расширяющегося мира в принципе могли быть получены задолго до рождения Эйнштейна, к примеру, еще во времена Ньютона. И не построены были эти модели по чисто психологическими причинам.

Для самого Ньютона не существовал вопрос о начале мира, для него непреложным фактом было сотворение мира Творцом. Человечество не было еще готово к постановке подобного вопроса на научной основе. Прошло два столетия со дня смерти Ньютона, и уже великий Эйнштейн не хочет говорить с аббатом Леметром о вопросе начала: «Это слишком похоже на акт творения. Сразу видно, что Вы священник». А ведь аббат Леметр, будущий президент папской Академии в Ватикане, был одним из тех, кто наряду с Фридманом исследовал решения ОТО. Термин «вселенные Леметра» прочно вошел в научную литературу. Именно он ввел понятие первичного атома, при взрыве которого и образовался наш мир.

Парадокс, а может быть, и нечто большее, чем парадокс, состоял в том, что и Эйнштейн, и многие другие ученые в течение нескольких лет после выхода в свет работ Фридмана (а затем и Леметра) не рассматривали всерьез космологические решения ОТО, зависящие от времени. Переворот в сознании и соответствующая переоценка произошли лишь после открытия Хаббла.

Быстрый переход