Изменить размер шрифта - +
Наверное, у многих читателей сложилось впечатление, что Эддингтон был прав, когда говорил: «Нет ничего проще, чем звезда». Быть может, у некоторых появилось даже легкое чувство обманутых надежд: а где же обещанные тайны, проблемы, загадки? Будут и тайны, и загадки. Они впереди.

 

 

Источник энергии

 

Повнимательнее вглядимся в источник светимости Солнца — термоядерные реакции. Сначала решим простой вопрос. Ведь если идет термоядерная реакция (неважно, по какому конкретному механизму), она резко повышает температуру вещества. Это, в свою очередь, должно обязательно повысить скорость процессов, что чревато для звезды весьма опасной возможностью: уподобиться огромной водородной бомбе, в которой термоядерная реакция носит характер взрыва.

Но Солнце светит стабильно, внутри нашей звезды есть механизмы, регулирующие скорость термоядерного синтеза. Что же это за механизмы?

Да, в общем-то опять школьная физика, все так же формула Клайперона, действующая, правда, в условиях гравитации. По этой формуле, если повысить температуру объема газа, немедленно произойдет его расширение, отчего газ тут же охладится. Вот поэтому-то в Солнце и существует жесткий механизм обратной связи, и термоядерные реакции не могут идти в недрах нашего светила с произвольной скоростью. Их скорость полностью определяется самой структурой Солнца.

Вспомним, что такое ядерные реакции. Ядро атома любого элемента (за исключением водорода) состоит из протонов и нейтронов, связанных между собою сильными взаимодействиями. Ясно, что, если протон или нейтрон сталкивается с ядром атома какого-либо элемента и «застревает» в нем, образуется ядро атома нового элемента и вдобавок высвобождается образовавшийся избыток энергии. Этот избыток уносится обычно какой-либо частицей — гамма-квантом, нейтрино и другими.

Процесс может быть и более сложным. Вновь образовавшееся ядро распадается на осколки (деление). Но все это и есть, собственно говоря, ядерные реакции.

Если мы начнем облучать какое-либо вещество нейтронами, то особых трудностей мы испытывать не будем, поскольку нейтрон не имеет заряда и ничто не мешает ему сколь угодно близко подойти к ядру. С протонами дело обстоит гораздо сложнее. Протон несет положительный заряд, и ему необходимо преодолеть электростатическое отталкивание других протонов в ядре. Сделать это довольно не просто, и поэтому в земных условиях для изучения реакций с этими частицами строят огромные ускорители, которые и сообщают протону необходимую начальную энергию для прохождения потенциального барьера. Если мы хотим заставить провзаимодействовать с каким-либо ядром α-частицу — ядро атома гелия-4, ей необходимо будет сообщить еще большую энергию, чем отдельному протону, поскольку в ее составе их уже два.

Ядерные реакции с протонами для космоса — вещь обычная, так как водород — самый распространенный элемент во всей Вселенной. Таким образом, протоны не представляют дефицита, а роль ускорителей в космосе играют, в частности, недра звезд. Температура там столь велика, что часть протонов приобретает вполне достаточные для начала ядерных реакций скорости. Такие реакции, где для «активирования» протонов используется температура, называются термоядерными.

Каковы эти реакции? Главным образом те же, что вызывают взрыв водородной бомбы, — слияние четырех ядер водорода (протонов) через ряд промежуточных реакций в ядро атома гелия. Это так называемый протон-протонный цикл.

Ядро атома гелия весит чуть меньше, чем четыре протона, и в соответствии со знаменитой формулой Эйнштейна E = mc<sup>2</sup> эта разница в массе переходит в энергию, которая и идет на разогрев вещества.

Попробуем провести простые количественные оценки выхода энергии в этой реакции. Четыре протона в атомных единицах весят — 4,03252. Но хорошо известно, что ядро атома гелия в тех же единицах весит 4,00389.

Быстрый переход