Изменить размер шрифта - +
Действительно, при регистрации потенциалов и токов коры головного мозга датчики воспринимают электрическую активность не отдельных нейронов, а сразу многих нервных клеток.

Но даже в том случае, если бы было возможно исследовать каждый нейрон в отдельности, например путем введения индивидуального зонда в каждую клетку головного мозга, то и тогда нельзя было бы понять, какой мысли соответствует каждый конкретный нервный импульс. Ведь мысль эквивалентна не одному импульсу, связана не с одним нейроном, а соответствует сложному процессу передачи, суммирования импульсов, происходящему одновременно в огромном количестве нейронов, рассеянных по всему мозгу. К тому же до сих пор не создана вычислительная машина, способная обработать такие гигантские объемы информации. Тем не менее эти первые наивные теории и проекты имели, как и некоторые другие ошибочные идеи, важные последствия. Они положили начало современной электродиагностике. Электрокардиография, электроэнцефалография, реоэлектроэнцефалография и прочие методы распознавания заболеваний, основанные на замере электрических токов на поверхности тела, своим появлением обязаны в конечном счете именно этим разработкам.

 «Штирлиц подумал…»

 

…Следует ли теперь навсегда забыть о проблеме чтения мыслей? Именно вербального мышления, когда человек думает речью, словами, наподобие всем известного «Штирлиц подумал…»? До недавнего времени многие исследователи считали, что на данном этапе развития науки и техники решение этой задачи представляется невозможным. Но так ли это в действительности?

– По сути, методика чтения вербальных мыслей мало чем отличается от чтения мыслей двигательного типа, – рассуждает исследователь Семиков. – Но если мысленное представление какого-то движения вызывает непроизвольно это движение в значительно ослабленной форме, то мысленная речь должна сопровождаться соответствующими непроизвольными незаметными движениями звукопроизводящих органов. Напрягаются и расслабляются мышцы гортани, глотки, языка, губ, челюстей – то есть всех органов артикуляции. Все эти движения представляют собой те же действия, которые мы бы производили, произнося мысли вслух, только значительно ослабленные, а потому обычно незаметные.

С этими непроизвольными движениями сталкивался каждый из нас. В детстве, когда мы учились читать, большого труда стоило научиться читать «про себя», слова сами собой вырывались наружу. Позднее усилием воли мы научились подавлять, сдерживать свою речь, научились читать про себя. На самом деле при этом развивались те самые тормозящие процессы, которые открыл Иван Сеченов и которые сдерживают другие наши мысленные движения. Но, как и в случае телодвижений, торможение не в состоянии целиком нейтрализовать внешние проявления речи, оно способно лишь ослабить их, сделав малозаметными, но не отсутствующими. Недаром многие даже в зрелом возрасте продолжают при чтении неслышно шевелить губами, бормотать, шептать. Это происходит не только при чтении, но и при вычислениях, рассуждениях.

Даже когда отсутствуют такие явные признаки мысленной речи, все равно остаются сопровождающие ее малозаметные движения, которые могут быть зарегистрированы чувствительной аппаратурой. Проще всего обнаружить эти движения путем регистрации электрической активности звукопроизводящих мышц, подобно тому, как при электрокардиографии по регистрируемым миоэлектрическим токам мышц сердца исследуются его сокращения. Правда, в нашем случае ввиду слабости сигналов по сравнению с уровнем помех от других мышц придется размещать датчики не на поверхности тела, а вводить их непосредственно в мышцы. Далее токи мышц (миоэлектрические токи) усиливаются, преобразуются в цифровой вид и поступают в память компьютера, где сопоставляются с предварительно записанными сигналами тех же мышц, но возникающими во время устной речи. Эти сигналы, снятые заблаговременно теми же датчиками, но, естественно, без значительного усиления, закладываются в память компьютера вместе с соответствующими им слогами и звуками устной речи.

Быстрый переход