Что принять за степень этой волнообразное? Длину волны? Можно. Мы так и поступали. Период колебаний, то есть «время одной волны»? Тоже, разумеется, можно. А есть у всякого волнового процесса еще и третья характеристика, которая может заменить первые две: частота. Это число волн за единицу времени. Оно показывает, сколько раз «время одной волны» укладывается в секунде. Это «ν» формулы Планка.
Вот и получается, что у любой элементарной частицы есть все необходимое, чтобы с полным правом считаться квантом: как у корпускулы, у нее есть энергия «Е» (словно бы сконцентрированная в ее массе), как у волны, у нее есть частота «ν» (отражающая меру ее волнообразности). И связывается эта энергия с этой частотой, по идее де Бройля, все через ту же постоянную «h»: E = h·ν.
Она должна иметь глубокий физический смысл, эта таинственная в своей универсальности и в своем могуществе постоянная Планка! В ее универсальности убеждает только что сказанное: ее власть распространяется и на излучение и на вещество. А в чем ее могущество?
…Пустимся в нашу привычную игру воображения. Представим себе «другую вселенную», отличающуюся от нашей только тем, что там постоянная Планка иная, чем у нас. Измеренная в тех же единицах, что приняты на нашей Земле, — в наших граммах, наших сантиметрах, наших секундах — она, эта постоянная величина, пусть будет там, скажем, в 100 раз меньше!
Кванты красного света и там были бы квантами красного света, потому что частота электромагнитных колебаний оставалась бы там такой же, как у нас, а цвет зависит от частоты. Электроны и там были бы электронами, а протоны — протонами. Но в той воображаемой «другой вселенной» все кванты излучения и все частицы были бы в 100 раз менее «энергичны» и, следовательно, в 100 раз менее «массивны», чем у нас. И это не прошло бы незамеченным. Так, силы тяготения, зависящие от произведения притягивающихся масс, были бы уже не в 100, а в 10 тысяч раз слабее (100·100 = 10 000). И тамошняя Земля вращалась бы вокруг тамошнего Солнца уже совсем по другой орбите, и на нее падало бы совсем другое количество благодатного излучения. Словом, та, «другая вселенная», и впрямь была бы существенно другой. Единственное условие, чтобы она отличалась от нашей только значением постоянной «h», повлекло бы за собой неисчислимые последствия.
Вот точно так же можно было бы в словесной игре вообразить мир, в котором другая знаменитая постоянная — скорость света «С» (постоянная Эйнштейна) — обладала бы иной величиной, чем у нас. Измеренная тоже в общепринятых единицах длины и времени, она была бы там, ну, скажем, в 2 раза больше! Тогда в реакторах тамошних атомных электростанций из урана добывалось бы в 4 раза больше полезной энергии, чем в реакторах наших. (В четыре, а не в два, так как закон Эйнштейна для связи энергии и массы включает квадрат скорости света.) Но реакторы — мелочь, а вот учетверение энергии, рождающейся при термоядерных реакциях в звездах, наверное, изменило бы весь ход истории «той вселенной». Тамошнее Солнце расточало бы гораздо больше энергии, и жизнь на тамошней Земле, вероятно, была бы совсем другой… В общем это был бы тоже существенно другой мир.
Конечно, все это похоже на детские гадания: как жилось бы на острове, где дважды два — четырнадцать, а деревья ходят друг к другу в гости. Но все же некоторый смысл в этих играх воображения есть: вдруг становится ощутимо понятно, почему такие постоянные, как «С» и «h», ученые торжественно называют мировыми постоянными. Самый облик вселенной зависит от их значения. Или, наоборот, их значение существенно отражает устройство вселенной.
И еще: становится понятной вечная забота физиков о все более точном измерении этих величин. |